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Abstract— With the tremendous development in hardware
computing and the widespread use of mobile terminal devices,
there are increasingly more people who prefer to share their
lives and opinions on social media. Though social media plat-
forms allow everyone to express their opinions freely, they create
convenience for rumor propagation in the meantime, which
brings huge negative influence on the public and makes rumor
detection extremely necessary. Currently, the most effective
methods regard rumor propagation network as a graph and
adopt graph convolutional networks (GCN) to detect rumor
automatically. Such methods achieve promising performance
in rumor detection, however, we argue that they have two
critical defects: 1) they neglect the position contributions of
rumor nodes in a graph, reducing the accuracy of rumor
detection results; 2) they are inadequate in dealing with imbal-
anced data, which also indicates the inflexibility and the poor
generalization ability of the model. To overcome these issues,
we incorporate Katz centrality into spectral-domain graph
convolution and propose a novel model named Out-In-Degree
Graph Convolutional Networks (OID-GCN). Specifically, be-
sides enhancing accuracy, Katz centrality can efficiently capture
the position information of nodes, while the rest structure of
OID-GCN shows a superb ability in dealing with imbalanced
data. Comprehensive experimental results on two real-world
datasets Twitter-15 and Twitter-16 demonstrate our OID-GCN
outperforms existing methods.

I. INTRODUCTION

As the internet applications develop continuously in recent
years, the public’s demands for social media have become
more and more diverse, which indicates people nowadays
prefer more interactive social media such as TikTok and
Twitter rather than televisions and newspapers in the past. In
such interactive social media, the interactions between a large
number of users form a complex social network. This not
only facilitates people’s communication, but also provides
convenience for creating and propagating rumors. Taking the
research on COVID-19 tweets1 from Northeastern University
as an example, from January 2020 to September 2020, the
number of COVID-19-related tweets was almost 30 million
and the fake tweets rates was ranged from 6.96% to 61.00%
on selected keywords. Such rumors not only caused mass
panic among the people but also put huge pressure on public
health organizations and other government departments. The
World Health Organization (WHO) even established a web-
site2 to report misinformation online. Therefore, how to build
a model to detect rumors quickly and accurately on social
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Fig. 1. A toy rumor propagation network to explain nodes’ position
contributions. Here Node 0 is the original tweet (i.e. the rumor source node).
As this node is retweeted by several other Nodes, it clearly holds a more
important position. Also, Node 0 has a greater contribution than other nodes
(e.g. Node 5) to judging whether this rumor is true.

networks has attracted more and more research attentions.
Traditional rumor detection models [1] are mainly based

on statistic learning approaches with fine-grained feature
engineering. However, we argue that they have a critical
defect, that is, these models depend too much on manually-
defined feature engineering and have difficulty in adapting
to real-world social scenario. In order to reduce the manual
preprocessing of datasets, methods based on deep neural
networks [2]–[4], [8], [20] have widely adopted. Although
these methods reach promising accuracy in dealing with
embedded textual data without manually-defined features,
they can not perform well in non-euclidean structure data
such as rumor propagation network (a.k.a. graph).

In order to effectively represent rumor’s propagation net-
work and its textual information at the meantime, graph
convolutional network (GCN) has been widely adopted re-
cently. The core idea of GCN is to perform spectral-domain
convolution operations on graph. More specifically, GCN
aggregates features of target node’s first-order neighbours to
represent node information along with graph structure. Such
method has a superb performance in embedding graphs, also,
it makes significant progress in rumor detection task [5]–[7].

1. https://storybench.shinyapps.io/covid-tweets/
2. https://www.who.int/campaigns/connecting-the-world-to-combat-

coronavirus/how-to-report-misinformation-online



Those GCN-based models do achieve promising results in
several benchmark datasets, however, we argue that there
exists two critical defects. (1) Existing GCN-based models
neglect the position contributions of nodes in rumor prop-
agation networks. As shown in Fig. 1, obviously, the original
tweet by rumor source node (i.e. opinion leader) should be
taken more into consideration than other ordinary retweets.
Indiscriminately calculating these nodes will reduce model’s
accuracy. (2) In a rumor propagation network, there are both
forwarding (i.e. retweet) and being forwarded relations, of
which numbers vary greatly. Past GCN-based models are
inadequate in processing imbalanced data. Therefore, their
high accuracy was at the cost of inflexibility, making it hard
to generalize to other scenarios.

In this paper, we mainly investigate two issues: (1) how
to differentiate the position contributions of nodes in rumor
propagation network, and (2) how to effectively process
imbalanced data. To solve these, we propose an end-to-end
rumor detection model named Out-In-Degree Graph Convo-
lution Networks (OID-GCN for short). The contributions of
this work are as threefold:
• We firstly adopt Katz centrality to differentiate the node

position contributions in rumor propagation network to
enhance the accuracy.

• We propose an end-to-end rumor detection model
named OID-GCN for better processing imbalanced data.

• We conduct comprehensive experiments on two real-
world datasets, Twitter-15 and Twitter-16, to demon-
strate the accuracy and flexibility of our model.

II. RELATED WORK

In this section, we roughly classified existing rumor de-
tection models to non-graph methods and graph neural
networks methods and review some related works.

A. Non-Graph Methods

Most of previous non-graph methods can be divided to
statistic learning methods and deep learning methods. In
statistic learning methods [1], [9], [10], most of them focus
on manually fine-grained feature engineering and incorpo-
rating external information to detect rumors. In order to
reduce the cost of manual feature extraction, numerous deep
learning models [2], [4], [11] were proposed to classify
rumors through extracting features from original rumor in-
formation automatically. Ma et al [2] provided a Recurrent
Neural Networks (RNN) based model for learning the hidden
representations in time series. Recursive neural networks
(RvNN) are also adopted [3] because of their strong ability
in analyzing tree-structured data.

These models could capture features of content effectively,
but ignore the total social network structure and the propa-
gation structure, which plays an important role in the spread
of rumors.

B. Graph Neural Networks Methods

Unlike deep learning models, Graph Neural Networks
(GNN) (Battaglia et al [12]; Defferrard et al [13]; Hamilton

et al [14]) could capture graph structural information better.
After several fancy GNN-based models [16], [17] were firstly
proposed, Bian et al [6] proposed a Bi-Directional Graph
Convolutional Networks (Bi-GCN) to explore both top-down
and bottom-up propagation information of rumors, while Wu
et al [15] generated representation of nodes in a graph by a
gated GNN-based algorithm and updated node information
by exchanging its neighbours within limited time steps.

Though having taken graph structural features into ac-
count, we argue that existing GNN-based methods ignore
the position contributions of nodes and can not efficiently
process the imbalanced data.

III. PROPOSED MODEL

In this section, we give thorough descriptions of our
proposed model OID-GCN, of which framework is shown
as Fig. 2. To describe all the details clearly, we divide this
section into 6 basic units. Firstly, we present notations used
in this paper and formulate the rumor detection task. Then,
we adopt Katz centrality to weigh the node features in an
event. After that, we introduce how to define and construct
out-in degree graphs and the network architecture of OID-
GCN. Weighted concatenation and a fully-connected layer
are also designed to obtain the predicted results. Finally, the
optimization part can learn the parameters in OID-GCN.

A. Notations and Problem Formulation

Before elaborating our model, we firstly define the nota-
tions and formulate our task. Same as other rumor detection
tasks, we let E = {e1, e2, ..., eN} denotes event set where ei
is the i-th event and N is the number of events. Every ei here
constructs a rumor propagation network, which is a directed
graph and can be denoted as ei = {r1, n2, n3, ..., nNi}.
Here r1 is the rumor source node, n2, n3, ..., nNi represent
forwarded rumors (i.e. retweets) respectively, and Ni is the
number of rumors in event ei. Rumors are texts which
are encoded by one-hot format. We regard each forwarded
rumors as nodes in rumor propagation network, so that ei’s
adjacency matrix can be represented as Ai, where its element
aimn ∈ {0, 1} and ∀m,n ∈ {1, 2, ..., Ni}. In the meantime,
we combine the embeddings of nodes {r1, n2, ..., nNi

} in
rows into a node feature matrix Xi. Instead of previous bi-
classification rumor detection task, we define our problem
as a fine-grained four-classification task which is denoted as
ŷi ∈ {NR,FR, TR,UR}. Specifically, ŷi is the predicted
results of ei, NR, FR, TR, and UR represent Non-Rumor,
False Rumor, True Rumor and Unverified Rumor respec-
tively. In all, given an event ei, our task can be formulated
as the equation below:

ŷi = fΘ(ei) (1)

where ŷi represents the predicted rumor class and f denotes
the function of OID-GCN with its parameters Θ.

B. Katz Centrality Weighted

Katz centrality computes the relative influence of a node
within a graph by measuring the number of first degree
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Fig. 2. The overall framework of the proposed model OID-GCN.

nodes. Compared with self-attention mechanisms comput-
ing the similarity weights of neighbour nodes [17], Katz
centrality has a stronger ability to capture nodes’ position
information. Given an event ei and its original adjacency
matrix Ai, then mathematically:

−→
CKatz = ((I − αAT

i )−1 − I)
−→
I (2)

where I is the identity matrix and
−→
I is a vector of size Ni.

The value of attenuation factor α must be smaller than the
reciprocal of absolute value of the largest eigenvalue of Ai.
Numbers in

−→
CKatz = {kz1, ..., kzNi

} denote the centrality
of nodes in ei. Thus the final Katz centrality weights can be
calculated by a softmax function, as the equation below:

wi = softmax(kzi) =
exp(kzi)∑Ni

j=1 exp(kzj)
(3)

The Katz weight set {w1, w2, ..., wNi
} will be then calcu-

lated with node feature matrix Xi =
(
r1 n2 ... nNi

)
as:

X̃i =
(
w1r1 w2n2 ... wNi

nNi

)T
(4)

Note that operation wini here is the scalar multiplication of
vector, and X̃i will be the input feature matrix to the graph
convolutional layer (GCL, cf. Section III-D).

C. The Construction of Out-In Degree Graphs

In rumor propagation network, the numbers of forwarding
and being forwarded relations vary greatly, making data
extremely imbalanced and hard to process. To resolve this
and enhance flexibility of our proposed model, we divide the
rumor propagation network (i.e. a graph) into an In-Degree
Graph (OD-Graph) and an Out-Degree Graph (OD-Graph).
Given the event ei, it is easy to know its adjacency matrix

Ai ∈ RNi×Ni is asymmetric. Then the elements of OD-
Graph AO

i and ID-Graph AI
i can be defined as following

equation:

aOi
mn =

{
aimn m 6 n

ainm m > n

aIimn =

{
aimn m > n

ainm m < n

(5)

Intuitively, OD-Graph is a symmetric matrix which copies
upper triangular part of Ai and paste to its lower triangular
part, while ID-Graph does the same thing in the opposite
direction. In real-world scenarios, rumors are always prop-
agated from a source node to other nodes, which indicates
it has a tree structure. The earlier a node propagates the
rumor, the smaller index it will have. Take OD-Graph AO

i

as example, it can be inferred that AO
i is the adjacency matrix

of a undirected graph holding the rumor propagation from
old nodes to new nodes (i.e. forwarding relation). Thus, we
can conclude that OD-Graph contains more information on
forwarding relation and ID-Graph contains more information
on being forwarded relation. Practically, we can set hyper-
parameters on these two parts to control the OID-GCN’s
biases to different datasets. Such can significantly enhance
the flexibility of our proposed model.

D. Out-In Degree Graph Convolutional Network

Given an event ei, after defining its OD-Graph AO
i , ID-

Graph AI
i , and its Katz centrality weighted feature matrix X̃i,

we then introduce the graph convolution structure of OID-
GCN to better exploit the semantics from rumor propagation
network. As shown in Fig. 2, the structures of OD-GCN
and ID-GCN are similar. Both of them are composed of two
layers of a graph convolution layer (GCL) and a rectified lin-
ear unit (ReLU) activation function. We also adopt Dropout



in preprocessing AO
i and AI

i before performing the graph
convolution operation. The edges in them are discarded at the
ratio of p to overcome the overfitting issue. For simplicity,
we still use symbols AO

i and AI
i in the later part of this

section. In OD-GCN, the operation of a single GCL can be
then formulated as:

GCLk(AO
i , X̃i) = D̃

O− 1
2

i ÃO
i D̃

O− 1
2

i X̃iWk (6)

where ÃO
i = AO

i +I (i.e. adding self-loop), D̃O
i is the degree

matrix of ÃO
i , and Wk is the weight matrix to transform the

dimension in k-th GCL. In all, the OD-GCN and ID-GCN
are shown as the following equations:

SO
i = ReLU(GCL2(AO

i ,ReLU(GCL1(AO
i , X̃i)))

SI
i = ReLU(GCL2(AI

i ,ReLU(GCL1(AI
i , X̃i)))

(7)

By such methods, we can obtain two semantic vectors
SO
i and SI

i of event ei which represent rumor forwarding
information and being forwarded information separately.

E. Weighted Concatenation and Fully-Connected Layer

In order to combine two semantic vectors SO
i and SI

i

flexibly to deal with biases on different datasets, we use a
weighted concatenation operation to get an overall semantic
vector:

Si = βSO
i ⊕ (1− β)SI

i (8)

where ⊕ indicates concatenation operation and 0 6 β 6 1
is a hyper-parameter on deciding how much we exploit
information from forwarding relations. We will discuss the
influence of β in details in Section-IV. A fully-connected
layer (FCL) is then performed to transform Si to a target
R1×4 dimension for fined-grained classification, which is
formulated as below:

Hi = WT
b ReLU(WT

a Si) (9)

where Wa and Wb are two coefficient weight matrices of
first layer and second layer of FCL respectively. The next
step is to obtain a softmax function to convert Hi ∈ R1×4

to the final prediction (i.e. a probability distribution):

ŷi = softmax(Hi) (10)

where the details about softmax function can be referred to
equation (3).

F. Optimization

In terms of optimization, our goal is to minimize the losses
between predicted probability distribution ŷi and the ground
truth yi. Since we regard rumor detection as a fine-grained
four-classification task, negative log likelihood loss function
can be used to learn the parameters:

L = − 1

N

∑
ei∈E

yilog(ŷi) (11)

where E is the event set and N is the number of events in
it, yi and ŷi represent the ground truth and predicted results
of event ei respectively. Note that we use stochastic gradient
descent (SGD) for efficiently learning and L2 regularization
is omitted in equation (11) for simplicity.

IV. EXPERIMENTS

In this section, we conduct various experiments to validate
the effectiveness and efficiency of our proposed OID-GCN.
Firstly, we give a thorough description on our selected
datasets Twitter-15 and Twitter-16. Then the detaild ex-
perimental settings including baselines, evaluation metrics,
and parameter settings are presented. Finally, we verify our
model with several baselines from accuracy and flexibility
perspectives.

A. Dataset Descriptions

Same as previous works [3], [4], [6], we select Twitter-15
and Twitter-16 as our datasets in this work as they contain
both rumor textual information and well-structured rumor
propagation networks (i.e. events). To our knowledge, they
are by far the most valuable datasets for research on real-
world rumor detection, of which statistics are shown in
Table I. Each rumor propagation network contain hundreds
of nodes, in which the first node represent the rumor source.
And they are labeled in four categories: True Rumors (TR),
False Rumors (FR), Unverified Rumors (UR), and Non-
Rumors (NR).

TABLE I
STATISTICS OF TWITTER-15 AND TWITTER-16

Statistic Twitter-15 Twitter-16

# of posts 331,612 204,820
# of Users 276,663 173,487
# of events 1,490 818
# of True Rumors 374 205
# of False Rumors 370 205
# of Unverified Rumors 374 203
# of Non-Rumors 372 205
Avg. time length / event 1,337 Hours 848 Hours
Avg. # of posts / event 223 251
Max. # of posts / event 1,768 2,765
Min. # of posts / event 55 81

B. Experimental Settings

We compare our OID-GCN against the following base-
lines:
• DTR [10]: This is a decision-tree-based model to detect

rumors via ranking the similar post cluster.
• DTC [1]: This key component of DTC is combining

decision tree and manual feature engineering.
• RFC [18]: The is a random-forest-based classifier which

is based on human-selected features from temporal,
structural, and linguistic perspectives.

• CNN-OM [19]: This model is based on a two-channel
CNN for sentence classification, which is a research
field very close to rumor detection.

• GRU-2 and LSTM-2 [2]: Two multi-layer rumor de-
tection structures based on gated recurrent units (GRUs)
and long-short term memory units (LSTMs) to capture
high-level features between different time steps.

• BU-RvNN and TD-RvNN [3]: Two recursive neural
networks (RvNN) based on bottom-up and top-down



TABLE II
AN OVERALL PERFORMANCE COMPARISON ON ACCURACY BETWEEN OUR OID-GCN AND SELECTED

BASELINES. NR: NON-RUMOR, FR: FALSE RUMOR, TR: TRUE RUMOR, AND UR: UNVERIFIED RUMOR.

Dataset Twitter-15 Twitter-16

Method Acc. NR FR TR UR Acc. NR FR TR UR
F1 F1 F1 F1 F1 F1 F1 F1

DTR 0.409 0.501 0.311 0.364 0.473 0.414 0.394 0.273 0.630 0.344
DTC 0.454 0.733 0.355 0.317 0.415 0.465 0.643 0.393 0.419 0.403
RFC 0.565 0.810 0.422 0.401 0.543 0.585 0.752 0.415 0.547 0.563

CNN-OM 0.650 0.613 0.622 0.533 0.694 0.663 0.654 0.677 0.549 0.721
GRU-2 0.785 0.801 0.794 0.744 0.801 0.773 0.793 0.755 0.801 0.764
LSTM-2 0.733 0.711 0.745 0.624 0.761 0.752 0.749 0.766 0.733 0.747
BU-RvNN 0.708 0.695 0.728 0.759 0.653 0.718 0.723 0.712 0.779 0.659
TD-RvNN 0.723 0.682 0.758 0.821 0.654 0.737 0.662 0.743 0.835 0.708

TL-GCN 0.801 0.782 0.823 0.803 0.797 0.804 0.759 0.782 0.809 0.804

OID-GCN 0.821 0.833 0.817 0.843 0.809 0.814 0.839 0.801 0.812 0.821

(a) Twitter-15 (b) Twitter-16 (c) R-Twitter-15 (d) R-Twitter-16

Fig. 3. (a) and (b) analyze the influence of hyper-parameter β (i.e. how much we exploit information from OD-Graph) on model’s accuracy, while (c)
and (d) analyze the influence of hyper-parameter β on two new datasets R-Twitter-15 and R-Twitter-16.

traversal directions to exploit semantics from rumor
propagation networks and textual information.

• TL-GCN [16]: This work innovatively proposes GCN
and introduce it to node classification task. We here use
a two-layer GCN (TL-GCN) as a baseline.

• Bi-GCN [6]: A state-of-the-art GCN-based rumor de-
tection model constructed by rumor propagation and
dispersion graphs. We compare OID-GCN with Bi-GCN
to verify that our model can efficiently deal with data
imbalance issues.

Among them, DTR, DTC, and RFC are statistic learning
methods, CNN-OM, GRU-2, LSTM-2, and BU/TD-RvNN
are deep learning methods, while Bi-GCN is a state-of-the-
art graph-neural-network-based rumor detection model. We
implement LSTM-2, TL-GCN and OID-GCN via pytorch.
Accuracy (Acc.) and F1-score (F1) are adopted here as
evaluation metrics for a fair comparison.

We firstly split the datasets to five parts randomly and
leverage 5 cross-validation. In terms of parameter settings,
we choose stochastic gradient descent (SGD) with a learning
rate in range of {0.001, 0.01, 0.1, 0.3, 0.5}, and the co-
efficients of L2 regularization are selected between {10−5,
10−4, 10−3, 10−2, 10−1}. We embed all feature nodes to 64
dimension vector space. We also train the model within 200
epochs, which mostly achieves the best and stable results
between 160 and 172 epochs. Noticed that any pre-trained
parameters of our model are omitted for fairness.

C. Accuracy Comparison

Experimental results in this section are shown in Table II.
Obviously, our proposed OID-GCN outperforms the other
baselines in accuracy. Having considered all necessary con-
ditions of rumor detection, including automatic detection,
rumor propagation routines, and textual information, our
OID-GCN efficiently boost overall Acc. and F1-score in
every category. Note that here we use 70% information from
OD-graph and the other 30% from ID-graph.

In order to further explore the influence of β (cf. Section-
III E) on OID-GCN’s results, we perform some supple-
mentary experiments with β from 0.9 to 0.1. The results
are shown in Fig. 3 (a) and (b). Almost every category
achieves its highest accuracy with β = 0.7. In Twitter-15 and
Twitter-16 datasets, the ratio between numbers of forwarding
relations and being forwarded relations is more than 9, which
corresponds to OD-Graph contains 8 times more semantics
than ID-Graph. Under the condition that the Dropout ratios
of OD-Graph and ID-Graph are 0.5 and 0.2, it is reasonable
β = 0.7 has the best performance.

D. Flexibility Comparison

Due to the design of β, our model has a superb flexibility,
which means it can generalize to different datasets. The
results are shown in Table III and Fig. 3 (c) and (d).



TABLE III
RESULTS OF FLEXIBILITY COMPARISON.

Method Acc. NR FR TR UR
F1 F1 F1 F1

R-Twitter-15

TL-GCN 0.799 0.804 0.827 0.765 0.772
Bi-GCN 0.692 0.710 0.723 0.695 0.685
OID-GCN 0.834 0.854 0.866 0.802 0.811

R-Twitter-16

TL-GCN 0.806 0.763 0.824 0.793 0.765
Bi-GCN 0.707 0.744 0.737 0.696 0.678
OID-GCN 0.827 0.843 0.823 0.816 0.833

We firstly reverse 50% of edges (i.e. forwarding relations)
of original datasets and construct two new datasets R-Twitter-
15 and R-Twitter-16. After such operation, the amount of
information contained in OD-Graph and ID-Graph is basi-
cally balanced. Here all the other statistics remain the same.
As shown in Table III above, since TL-GCN does not have
any biases to graph structure and node features, the results
of TL-GCN are very similar to before. Under the condition
of β = 0.3, OID-GCN significantly outperforms the state-
of-the-art Bi-GCN on every evaluation metrics.

As for the impact of β on this new scenario, we perform
various additional experiments as illustrated in Fig. 3 (c) and
(d). Almost every category achieves its highest performance
with β = 0.3. Given that we reverse 50% of original edges’
directions, the sparseness of newly constructed OD-Graph
of ID-Graph is extremely close. It is convincing β = 0.3
achieves the best results as their Dropout ratios are the same
as those in Section-IV C. Thus, we can conclude that β is
efficient in adjusting the sparseness ratio between OD-Graph
to ID-Graph. This also further proves our model’s flexibility.

V. CONCLUSION AND FUTURE WORK

In this paper, we present an end-to-end model named OID-
GCN for accurate rumor detection on Twitter. We firstly
adopt Katz centrality to weight node feature matrix to better
capture node position information. Also, we innovatively
design an Out-In-Degree graph structure to flexibly represent
rumor propagation process. Experimental results demonstrate
that OID-GCN outperforms several state-of-the-art baselines
in both accuracy and flexibility (i.e. generalization ability).

In the future, we aim to continue our research on rumor
detection from following perspectives: though Twitter-15 and
Twitter-16 are fine-grained datasets, the information in them
is a bit out-of-date. COVID-19 and U.S. presidential election
2020 provide numerous topics and tweets, which can form
extremely large and sparse social networks (graphs). It is
very meaningful to clean up an up-to-date dataset and design
more effective models for future research.

REFERENCES

[1] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
twitter,” in Proceedings of the 20th International Conference on World
Wide Web, 2011, pp. 675–684.

[2] J. Ma, W. Gao, P. Mitra, S. Kwon, B. Jansen, K.-F. Wong, and M. Cha,
“Detecting rumors from microblogs with recurrent neural networks,”
in Proceedings of the 25th International Joint Conference on Artificial
Intelligence, 2016, pp. 3818-3824.

[3] J. Ma, W. Gao, and K.-F. Wong, “Rumor Detection on Twitter with
Tree-structured Recursive Neural Networks,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Long Papers), 2018, pp. 1980-1989.

[4] Y. Chen, J. Sui, L. Hu, and W. Gong, “Attention-Residual Network
with CNN for Rumor Detection,” in Proceedings of the 28th Interna-
tional Conference on Information and Knowledge Management, 2019,
pp. 1121-1130.

[5] M. Dong, B. Zheng, N. Q. V. Hung, H. Sun, and G. Li, “Multiple
Rumor Source Detection with Graph Convolutional Networks,” in
Proceedings of the 28th International Conference on Information and
Knowledge Management, 2019, pp. 569-578.

[6] T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, and J. Huang,
“Rumor Detection on Social Media with Bi-Directional Graph Con-
volutional Networks,” in Proceedings of the 34th AAAI Conference
on Artificial Intelligence, 2020, pp. 549-556.

[7] X. Yang, Y. Lyu, T. Tian, Y. Liu, Y. Liu, and X. Zhang, “Rumor De-
tection on Social Media with Graph Structured Adversarial Learning,”
in Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, 2020, pp. 1417-1423.

[8] F. Zhao, X. Gui, Y. Huang, H. Jin and L. T. Yang, “Dynamic
Entity-based Named Entity Recognition Under Unconstrained Tagging
Schemes,” in IEEE Transactions on Big Data, 2021.

[9] K. Wu, S. Yang and K. Q. Zhu, “False rumors detection on sina weibo
by propagation structures,” in Proceedings of the 31st International
Conference on Data Engineering, 2015, pp. 651-662.

[10] Z. Zhao, P. Resnick, and Q. Mei, “Enquiring minds: Early detection
of rumors in social media from enquiry posts,” in Proceedings of the
24th International Conference on World Wide Web, 2015, pp. 1395–
1405.

[11] F. Yu, Q. Liu, S. Wu, L. Wang and T. Tan, “A convolutional
approach for misinformation identification,” in Proceedings of the
26th International Joint Conference on Artificial Intelligence, 2017,
pp. 3901–3907.

[12] P. Battaglia, R. Pascanu, M. Lai, D.J. Rezende, and K. Kavukcuoglu,
“Interaction networks for learning about objects, relations and
physics,” in Proceedings of the 30th Annual Conference on Neural
Information Processing Systems, 2016, pp. 3844–3852.

[13] M. Defferrard, X. Bresson, P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proceed-
ings of the 30th Annual Conference on Neural Information Processing
Systems, 2016, pp. 3844–3852.

[14] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st Annual Confer-
ence on Neural Information Processing Systems, 2017, pp. 1024–1034.

[15] Z. Wu, D. Pi, J. Chen, M. Xie, and J. Cao, “Rumor detection based on
propagation graph neural network with attention mechanism,” Expert
Systems with Applications, 2020, Article 113595.

[16] T. N. Kipf, and M. Welling,“Semi-Supervised Classification with
Graph Convolutional Networks,” in Proceedings of the 5th Interna-
tional Conference on Learning Representations, 2017.

[17] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
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