
POSTER: Rethinking Graph Data Placement for Graph
Neural Network Training on Multiple GPUs

Shihui Song
shihui-song@uiowa.edu

The University of Iowa, USA

Peng Jiang
peng-jiang@uiowa.edu

The University of Iowa, USA

Abstract
The existing Graph Neural Network (GNN) systems adopt
graph partitioning to divide the graph data for multi-GPU
training. Although they support large graphs, we find that
the existing techniques lead to large data loading overhead.
In this work, we for the first time model the data movement
overhead among CPU and GPUs in GNN training. Based on
the performance model, we provide an efficient algorithm
to divide and distribute the graph data onto multiple GPUs
so that the data loading time is minimized. The experiments
show that our technique achieves smaller data loading time
compared with the existing graph partitioning methods.

CCS Concepts: • Software and its engineering→Mas-
sively parallel systems.

Keywords: graph neural network, data loading

1 Introduction
Graph Neural Networks (GNNs) have emerged as the state-
of-the-art models for machine learning tasks on graphs. Due
to their superior accuracy, GNNs play an important and in-
creasing role in many application domains, including content
recommendation, traffic prediction, and molecular property
prediction. Different from the traditional graph processing
algorithms, GNNs make predictions on graphs with node
features. As the feature of each node contains hundreds or
thousands of attributes, the data processed by GNNs are
much larger than the graph structure itself. The node fea-
tures exceed the memory capacity of most GPUs, making it
challenging to train GNNs efficiently on large graphs.
To handle large graphs, the current GNN systems either

take an off-the-shelf graph partitioning algorithm or use
heuristic partitioning methods. For example, DGL [3] uses
METIS [1] for graph partitioning. It stores the graph on GPU
to avoid the data copying from CPU to GPU. However, it does
not work for large graphs that exceed the memory capacity

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508435

of multiple GPUs. PaGraph [2] partitions the graph based on
the training nodes. It stores the graph on CPU and buffers
the most frequently accessed nodes of each partition on GPU.
In order to achieve high hit rates on GPU buffers, PaGraph
only allows local shuffling of training nodes, which often
leads to models with lower accuracy.

We find that the existing graph partitioning methods are
unsatisfactory for GNN training. Figure 1 shows the training
time per epoch on reddit graph with different partitioning
methods and buffer sizes. We can see that loading the input
features is a performance bottleneck when the GPU buffer
is small. With PaGraph (PG), data loading takes 50% of the
total execution time if we use two GPUs and store 10% of
the most frequently accessed nodes on each GPU. When
the GPU buffer size increases to 20% of the nodes, the data
loading time slightly decreases to 47% of the total execution
time. With DGL, the data loading time is slightly better but
still takes about 40% of the total execution.
To improve the performance of the existing systems, we

study the data movements among CPU and GPUs for GNN
training and propose an efficient algorithm for dividing the
graph data onto multiple GPUs.

2 Minimizing Data Movement For Input
Features

We consider the data movement problem in data-parallel
GNN training with 𝑛 GPUs on a single machine. We assume
that each GPU-𝑖 can only store the feature vectors of a set
of nodes 𝐵𝑖 . With this setup, we now give a performance
model of the data movement of input features and provide an
efficient algorithm to minimize the data movement overhead.

2.1 Performance Model
Since GPU-𝑖 stores a set of nodes 𝐵𝑖 , the nodes that are stored
on all GPUs are

𝐵𝑔𝑝𝑢 = 𝐵1 ∪ . . . ∪ 𝐵𝑛 .

We assume that the cost of reading nodes on the same GPU
is zero, the cost of reading nodes on a different GPU is 𝐶𝑔𝑝𝑢 ,
and the cost of reading from CPU is 𝐶𝑐𝑝𝑢 . In every training
iteration, each GPU needs to read input features from either
CPU or one of the GPUs. Suppose GPU-𝑖 needs to read a
set of nodes 𝑆𝑖 . We denote the remote nodes that are not on
GPU-𝑖 as

𝑅𝑖 = 𝑆𝑖 \ 𝐵𝑖 = 𝑆𝑖 − (𝑆𝑖 ∩ 𝐵𝑖). (1)
1

455

https://doi.org/10.1145/3503221.3508435
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503221.3508435&domain=pdf&date_stamp=2022-03-28

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Shihui Song and Peng Jiang

For every node in 𝑅𝑖 , we need to decide where to fetch it.
We need to divide 𝑅𝑖 into two sets 𝑅𝑖,𝑐𝑝𝑢 and 𝑅𝑖,𝑔𝑝𝑢 , where
𝑅𝑖,𝑐𝑝𝑢 are the nodes read from CPU and 𝑅𝑖,𝑔𝑝𝑢 ∈ 𝐵𝑔𝑝𝑢 are
from other GPUs. The cost of reading 𝑆𝑖 can be written as

𝐶𝑐𝑝𝑢 |𝑅𝑖,𝑐𝑝𝑢 | +𝐶𝑔𝑝𝑢 |𝑅𝑖,𝑔𝑝𝑢 |.
If 𝐶𝑔𝑝𝑢 < 𝐶𝑐𝑝𝑢 , we should fetch as many nodes as possible
from GPUs. The minimum cost is achieved when 𝑅𝑖,𝑔𝑝𝑢 =

𝑅𝑖 ∩ 𝐵𝑔𝑝𝑢 . If 𝐶𝑔𝑝𝑢 ≥ 𝐶𝑐𝑝𝑢 , we should fetch all nodes from
CPU, i.e., 𝑅𝑖,𝑔𝑝𝑢 = ∅ and 𝑅𝑖,𝑐𝑝𝑢 = 𝑅𝑖 . More formally, we define
the cost of reading 𝑆𝑖 by GPU-𝑖 as

𝐶𝑖 (𝐵) =
{
𝐶𝑐𝑝𝑢 |𝑅𝑖 \ 𝐵𝑔𝑝𝑢 | +𝐶𝑔𝑝𝑢 |𝑅𝑖 ∩ 𝐵𝑔𝑝𝑢 |, if 𝐶𝑔𝑝𝑢 < 𝐶𝑐𝑝𝑢 ;
𝐶𝑐𝑝𝑢 |𝑅𝑖 |, if 𝐶𝑔𝑝𝑢 ≥ 𝐶𝑐𝑝𝑢 .

(2)
Note that 𝐶𝑖 is a function of 𝐵 = {𝐵1, . . . , 𝐵𝑛} and is depen-
dent on 𝑆𝑖 . The value we want to minimize is its expectation
E𝑆𝑖∼D [𝐶𝑖]. Since the GPUs run in parallel, we minimize the
maximum cost across all GPUs. The problem can then be
formulated as a constrained optimization problem:

min max
𝑖∈[1,𝑛]

(
E𝑆𝑖∼D [𝐶𝑖 (𝐵)]

)
,

subject to |𝐵𝑖 | ≤ 𝐵𝑆𝐼𝑍𝐸, 𝑖 = 1, . . . , 𝑛 (3)

where 𝐵𝑆𝐼𝑍𝐸 is the maximum number of nodes that can be
stored on each GPU. Our goal is to find the optimal configu-
ration of 𝐵𝑖 that minimizes max𝑖 (E𝑆𝑖 [𝐶𝑖]).

2.2 An Efficient Solution
To solve Problem (3), we first consider the trivial case where
𝐶𝑔𝑝𝑢 ≥ 𝐶𝑐𝑝𝑢 , i.e., the GPU is not connected with other GPUs
through NVLink. In this case, we should read data from CPU.
According to (1) and (2), for each GPU we need to minimize

max
𝑖

(E𝑆𝑖 [𝐶𝑖]) = 𝐶𝑐𝑝𝑢E𝑆 [|𝑆 |] −𝐶𝑐𝑝𝑢 min
𝑖
E𝑆𝑖 [|𝑆𝑖 ∩ 𝐵𝑖 |])

where E𝑆 [|𝑆 |] is the expected number of sampled input
nodes and is a constant numbe for all GPUs. Since nodes
with higher sampling probabilities are more likely shown
in 𝑆𝑖 , when nodes with the highest sampling probabilities
are stored on each GPU, E𝑆𝑖 [|𝑆𝑖 ∩ 𝐵𝑖 |] is maximized and the
data loading overhead is minimized.
When 𝐶𝑔𝑝𝑢 < 𝐶𝑐𝑝𝑢 , i.e., the GPU is connected with other

GPUs through NVLink. For each GPU we need to minimize

max
𝑖

(
E𝑆𝑖 [𝐶𝑖]

)
=𝐶𝑐𝑝𝑢E𝑆 [|𝑆 |] −min

𝑖

(
𝐶𝑔𝑝𝑢E𝑆𝑖 [|𝑆𝑖 ∩ 𝐵𝑖 |]

)
−
(
𝐶𝑐𝑝𝑢 −𝐶𝑔𝑝𝑢

)
E𝑆

[
|𝑆 ∩ 𝐵𝑔𝑝𝑢 |

]
. (4)

The last two terms reveal a tradeoff. The second last term
suggests that each GPU stores the same set of nodes with the
highest sampling probabilities, while the last term suggests
we should store as many nodes as possible on all GPUs. To ex-
plore the tradeoff, we first obtain an ordered set of the nodes
and store nodes from𝑉 [0] to𝑉 [𝐵𝑆𝐼𝑍𝐸 − 1] with the highest
sampling probability on each GPU. The algorithm tries to it-
eratively replace the duplicate nodes on different GPUs with

0

1

2

3

4

5

6

PG DGL Our PG DGL Our PG DGL Our PG DGL Our DGL Our DGL Our

BSIZE=0.1N 0.2N 0.1N 0.2N 0.1N 0.2N

2GPU (2+2)GPU 4GPU

Ex
ec

u
ti

o
n

 T
im

e
 p

er
 E

p
o

ch
 (

se
c)

Other DataLoad

Figure 1. Breakdown execution time on reddit graph.

new nodes from 𝑉 [𝐵𝑆𝐼𝑍𝐸] to 𝑉 [𝑁 − 1] and keep at least
one copy of the node on GPU. In the first iteration, it tries to
replace 𝑉 [𝐵𝑆𝐼𝑍𝐸 − 1] in 𝐵1 with 𝑉 [𝐵𝑆𝐼𝑍𝐸]. If the increase
of the second last term of (4) is greater than the decrease of
the last term, i.e., 𝐶𝑐𝑝𝑢𝑝 (𝑉 [𝐵𝑆𝐼𝑍𝐸]) > 𝐶𝑔𝑝𝑢𝑝 (𝑉 [𝐵𝑆𝐼𝑍𝐸−1]) , the
replacement is beneficial, and we perform the replacement.
To ensure GPUs have similar data movement costs, we select
the GPU with the lowest sum of sampling probabilities in
every replacement step. An advantage of our algorithm over
the existing graph partitioning methods is that it has 𝑂 (𝑁)
time and space complexity.

3 Evaluation
We evaluate our technique on four Nvidia V100 GPUs with
two interconnect configurations: 1) every two GPUs are
connected through NVLink Bridge (denoted as ‘(2+2)GPU’);
2) all GPUs are connected through NVSwitch (denoted as
‘4GPU’). By only allowing a GPU to read data from the GPU
next to it, we simulate systems with NVLink Bridges.
As shown in Figure 1, loading the input features is a per-

formance bottleneck when the GPU buffer is small. Our data
placement strategy achieves smaller data loading time than
both PaGraph and DGL. We can see that our technique is
most effective on ‘4GPU’, reducing the data loading time by
2.3x compared to DGL when 𝐵𝑆𝐼𝑍𝐸 = 0.1𝑁 and 3.3x when
𝐵𝑆𝐼𝑍𝐸 = 0.2𝑁 . On ‘2GPU’ and ‘(2+2)GPU’, because only two
GPU buffers are used together, the improvement is not as
good as on ‘4GPU’, but we still achieve 1.5x to 1.9x speedup
against PaGraph and 1.2x to 1.5x speedup against DGL.

References
[1] George Karypis and Vipin Kumar. 1998. A fast and high quality multi-

level scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing 20, 1 (1998), 359–392.

[2] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020.
PaGraph: Scaling GNN training on large graphs via computation-aware
caching. In Proceedings of the 11th ACM Symposium on Cloud Computing.
401–415.

[3] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang
Song, Quan Gan, Zheng Zhang, and George Karypis. 2020. Distdgl:
distributed graph neural network training for billion-scale graphs. In
2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures
and Algorithms (IA3). IEEE, 36–44.

2

456

	Abstract
	1 Introduction
	2 Minimizing Data Movement For Input Features
	2.1 Performance Model
	2.2 An Efficient Solution

	3 Evaluation
	References

