
Rethinking Graph Data Placement
for Graph Neural Network Training
on Multiple GPUs

Shihui Song and Peng Jiang

University of Iowa

Graph Neural Network (GNN)

Background

Graph Construction

Graph Neural Network Model

Feature Aggregation

Sampling-based GNN training

Background

• To reduce the computation, sampling-based GNN training samples a subset of neighbors
and estimates the aggregation results based on the sampled nodes.

Analysis of DGL and PaGraph (PG)

Background

DGL
• Adopts METIS graph partitioning
• Assumes that the graph can be entirely

stored on multiple GPUs

PaGraph
• Stores the graph on CPU and buffers the

most frequently accessed nodes of each
partition on GPU

Motivation

Loading features is a bottleneck of training

Motivation

• Assume that the GPU memory
is small and we can only store
20% of nodes that are most
frequently accessed on each
GPU

Performance Model

Methodology

\ , if ;
()

 if .

cpu i gpu gpu i gpu gpu cpu

i

cpu i gpu cpu

C R B C R B C C
C B

C R C C

 +
=

Cost Function of GPU_i:

Optimization Problem:

~
[1,]

min max([()]),

subject to , 1,...,

iS D i
i n

i

C B

B BSIZE i n

 =Goal Find the optimal configuration of iB

: The nodes GPU_i needs to read from CPU and other GPUsiR

gpuB : The nodes saved on GPUs

cpuC : The cost of reading a node on CPU

gpuC : The cost of reading a node on a different GPU

Case1

Methodology

gpu cpuC C

Optimization Problem:

[] E []

 E [\]

 E [] E []

i i

i

S ii

S i cpu S i

cpu S i i

cpu i cpu S i i

C C R

C S B

C S C S B

 =

=

= −

When is maximized for every GPU_i, this formular can achieve the minimum value.E []
iS i iS B

Rule1: We store nodes with the highest sampling probability on it

: The nodes GPU_i needs to readiS

iB : The nodes saved on GPU_i local memory

Case2

Methodology

gpu cpuC C

Optimization Problem:

()

()

[]

E \ E

E E

E E E

i

i i

i i

i i i

S i

cpu S i gpu gpu S i gpu

cpu S i cpu gpu S i gpu

cpu S i cpu gpu S i gpu gpu S i i

C

C R B C R B

C R C C R B

C S C C S B C S B

 = +

 = − −

 = − − −

Should store as many nodes
as possible on all GPUs

Each GPU stores the same set of
nodes with the highest sampling
probability

Tradeoff

Case2 Algorithm

Methodology

()(_) (_)gpuC p old node p new node−

() (_)cpu gpuC C p new node−

Increase of the second term

Decrease of the last term

(_) (_)
gpu

cpu

C
p new node p old node

C
Beneficial condition

Case2 Example

Methodology

The ordered nodes: [1, 2, 3, 4, 5, 0]

GPU_0:

GPU_1:

1 2

1 2

p_sum_0 = 0

p_sum_1 = 0

3 Beneficial?

Which GPU?

p_3 > 0.3*p_2 (=0.3) ✔

Keep at least one copy of 1 2

4

p_sum_0 = p_sum_1 0

3 p_sum_0 = 1

p_4 > 0.3*p_1 (=0.3) ✔

Which GPU? p_sum_0 > p_sum_1 1

4 p_sum_1 = 5/6

Limitation of data placement

If the access frequency is less skewed and the GPU memory is small, the data
loading might be expensive even with algorithm1

• We still need to load feature embeddings from CPU in most of the cases

Limitation

A locality-aware neighbor sampling technique to further reduce the data

movement overhead

Locality-Aware Neighbor Sampling

Methodology

CPU: 65

Multiply the sampling probabilities of the neighbor set of B with an adjustable factor

The ordered nodes: [1, 2, 3, 4, 5, 0]

GPU_0:

GPU_1:

1

2

3

4

1 2 4 … Maximum

Experimental Setup

• Platform
A single machine with two Intel Xeon Gold 6248 CPUs and eight Nvidia Tesla V100 GPUs

– GPUs connected with NVLink Bridge: (2+2)GPU, (2*4)GPU

– GPUs connected with NVSwitch: 2GPU, 4GPU, 8GPU

• Dataset

• Baseline
– Naive partitioning

– Random partitioning

– METIS partitioning

– PaGraph partitioning (Lin et al., SoCC’20)

Experiments

Reddit Yelp Products Papers100M MAG240M

#nodes 233K 717K 2.4M 111M 122M

#edges 11.6M 7.0M 62M 1.6B 1.3B

feat_size 535MB 820MB 934MB 53GB 175GB

Evaluation: Speedup on Reddit

Experiments

50%
48%44%

38%

Evaluation: Speedup on Papers100M

Experiments

Our strategy reduces the
data loading time

by 2.4x to 4.0x compared
to random

Evaluation: Accuracy

Experiments

Training loss on Reddit (2GPU) Training loss on Reddit (2+2GPU)

LAS has similar
convergency speed

LAS has smaller loss
at the end of training

Evaluation: Preprocess overhead

Experiments

Reddit Yelp Products

PaGraph 382 1976 4753

METIS 17 15 83

Our 0.49 0.76 3.6

The execution time for dividing the graphs into four parts

Our algorithm is much faster than the previous graph partitioning algorithms

• PaGraph has time complexity
• We have time and space complexity

2()O N
()O N

Summary

• Aim to reduce the data loading overhead for largescale GNN training on multiple
GPUs

• Propose a performance model of the data movement among CPU and GPUs and
provide an efficient algorithm to find an optimal data placement strategy

• Propose a locality-aware neighbor sampling technique to further reduce the data
loading overhead

• Reduce data movement overhead by 1.2x to 3.3x times with data placement strategy,
and achieve up to 4.4x times speedup with locality-aware sampling

Summary

For information, doubts and clarifications, contact: shihui-song@uiowa.edu

	Slide 1: Rethinking Graph Data Placement for Graph Neural Network Training on Multiple GPUs
	Slide 2: Graph Neural Network (GNN)
	Slide 3: Sampling-based GNN training
	Slide 4: Analysis of DGL and PaGraph (PG)
	Slide 5: Motivation
	Slide 6: Performance Model
	Slide 7: Case1
	Slide 8: Case2
	Slide 9: Case2 Algorithm
	Slide 10: Case2 Example
	Slide 11: Limitation of data placement
	Slide 12: Locality-Aware Neighbor Sampling
	Slide 13: Experimental Setup
	Slide 14: Evaluation: Speedup on Reddit
	Slide 15: Evaluation: Speedup on Papers100M
	Slide 16: Evaluation: Accuracy
	Slide 17: Evaluation: Preprocess overhead
	Slide 18: Summary

