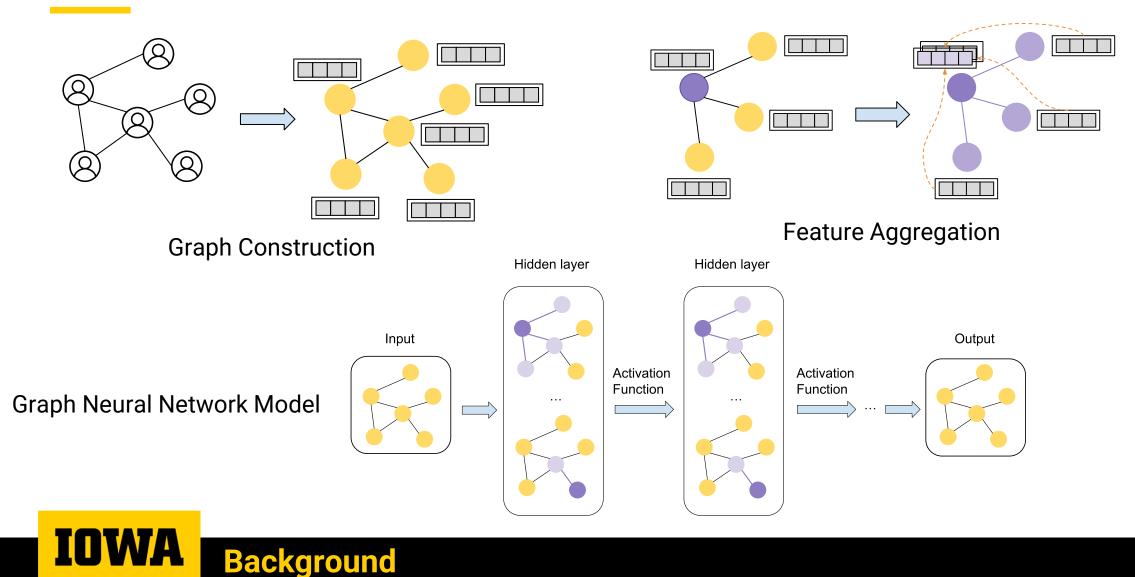


Rethinking Graph Data Placement for Graph Neural Network Training on Multiple GPUs

Shihui Song and Peng Jiang

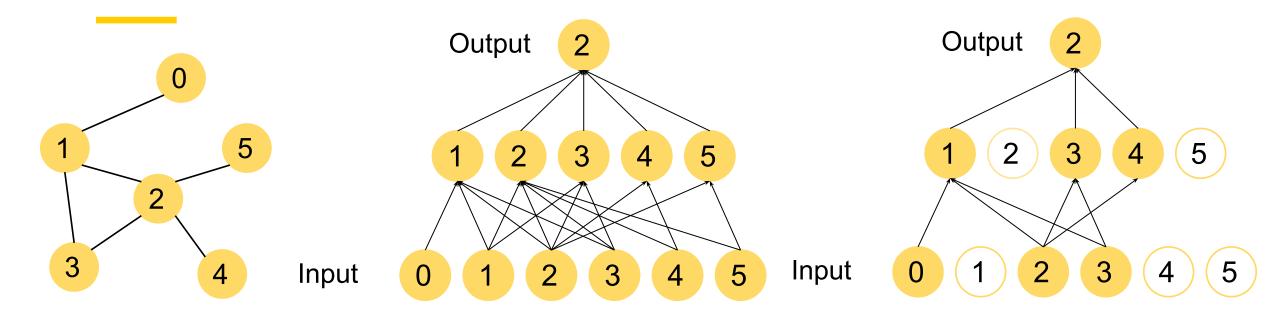
University of Iowa

Graph Neural Network (GNN)



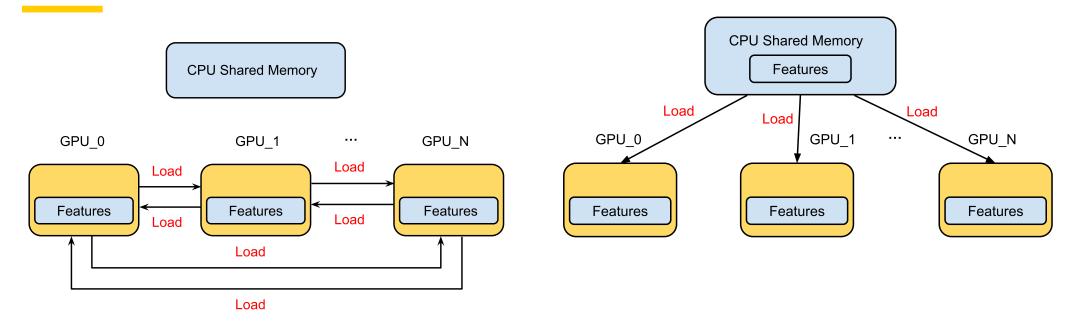
Sampling-based GNN training

Background



• To reduce the computation, sampling-based GNN training samples a subset of neighbors and estimates the aggregation results based on the sampled nodes.

Analysis of DGL and PaGraph (PG)



DGL

- Adopts METIS graph partitioning
- Assumes that the graph can be entirely stored on multiple GPUs

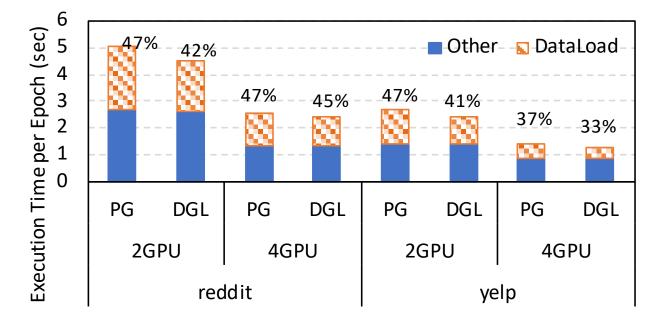
Background

PaGraph

• Stores the graph on CPU and buffers the most frequently accessed nodes of each partition on GPU

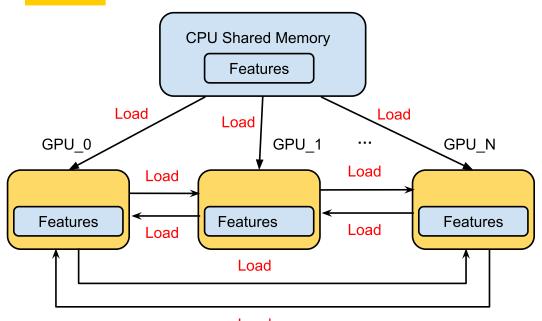
Motivation

 Assume that the GPU memory is small and we can only store 20% of nodes that are most frequently accessed on each GPU



Loading features is a bottleneck of training

Performance Model



Load

Methodology

Find the optimal configuration of B_i

Cost Function of GPU_i:

$$C_{i}(B) = \begin{cases} C_{cpu} \left| R_{i} \setminus B_{gpu} \right| + C_{gpu} \left| R_{i} \cap B_{gpu} \right|, & \text{if } C_{gpu} < C_{cpu}; \\ C_{cpu} \left| R_{i} \right| & \text{if } C_{gpu} \geq C_{cpu}. \end{cases}$$

 R_i : The nodes GPU_i needs to read from CPU and other GPUs

 $B_{\rm gpu}$: The nodes saved on GPUs

 $C_{\scriptscriptstyle cpu}$: The cost of reading a node on CPU

 $C_{\rm gpu}$: The cost of reading a node on a different GPU

Optimization Problem:

min $\max_{i \in [1,n]} (E_{S_i \sim D}[C_i(B)]),$
subject to $|B_i| \le BSIZE, \quad i = 1, ..., n$

Case1
$$C_{gpu} \ge C_{cpu}$$

Optimization Problem:

$$\mathbf{E}_{S_i}[C_i] = C_{cpu} \mathbf{E}_{S_i}[|R_i|]$$
$$= C_{cpu} \mathbf{E}_{S_i}[|S_i \setminus B_i|]$$
$$= C_{cpu} \mathbf{E}_{S_i}[|S_i|] - C_{cpu} \mathbf{E}_{S_i}[|S_i \cap B_i|]$$

 S_i : The nodes GPU_i needs to read

 B_i : The nodes saved on GPU_i local memory

When $E_{S_i}[|S_i \cap B_i|]$ is maximized for every GPU_i, this formular can achieve the minimum value.

Rule1: We store nodes with the highest sampling probability on it

Case2 $C_{gpu} < C_{cpu}$

Optimization Problem:

$$\begin{split} & \mathbf{E}_{S_{i}}[C_{i}] \\ &= C_{cpu}\mathbf{E}_{S_{i}}\left[\left|R_{i} \setminus B_{gpu}\right|\right] + C_{gpu}\mathbf{E}_{S_{i}}\left[\left|R_{i} \cap B_{gpu}\right|\right] \\ &= C_{cpu}\mathbf{E}_{S_{i}}\left[\left|R_{i}\right|\right] - \left(C_{cpu} - C_{gpu}\right)\mathbf{E}_{S_{i}}\left[\left|R_{i} \cap B_{gpu}\right|\right] \\ &= C_{cpu}\mathbf{E}_{S_{i}}\left[\left|S_{i}\right|\right] - \left(C_{cpu} - C_{gpu}\right)\mathbf{E}_{S_{i}}\left[\left|S_{i} \cap B_{gpu}\right|\right] - C_{gpu}\mathbf{E}_{S_{i}}\left[\left|S_{i} \cap B_{i}\right|\right] \end{split}$$

Should store as many nodes as possible on all GPUs

Methodology

Each GPU stores the same set of nodes with the highest sampling probability

Tradeoff

Case2 Algorithm

Input: α ; #nodes: <i>N</i> ; #GPUs: <i>n</i> ; Sampling probability: <i>p</i> ; B	uffer size:
BSIZE	
Output: $B = \{B_1,, B_n\}$	
/* Sort nodes by probability p in descending order	*/
1 $V = \text{sort}_{\text{nodes}}(N, p);$	
<pre>/* Initialize buffer on each GPU with nodes of highest</pre>	:
sampling probabilities	*/
2 for $i = 1$ to n do	
$B_i = [V[0], V[1], \dots V[BSIZE - 1]];$	
4 $p_sum = [0.0, \ldots, 0.0];$	
rease of the second term $\ C_{gpu}ig(p(old_node) - p(newig)$	node)

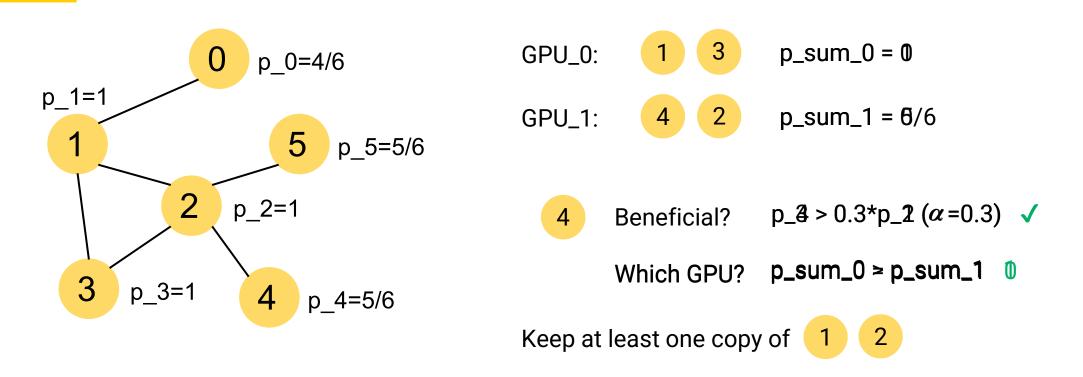
Beneficial condition $p(new_node) > \frac{C_{gpu}}{C_{cpu}} p(old_node)$

5 f	or $i = 0$ to $(\min(N, n \cdot BSIZE) - BSIZE - 1)$ do	
6	if $i \mod n == 0$ then	
	/* Sort GPUs by p_sum in ascending order	*/
7	<pre>ordered_devices = sort_device(n, p_sum);</pre>	
	<pre>/* Do not change last device in each round</pre>	*/
8	if $i \mod n == n - 1$ then continue;	
	/* Get device in the sorted order	*/
9	$device = ordered_devices[i \mod n];$	
	/* Select the next node in V	*/
10	$new_node = V[i + BSIZE];$	
	<pre>/* Select a duplicate node on device</pre>	*/
11	$old_node_idx = BSIZE - 1 - \lfloor i/n \rfloor;$	
12	$old_node = V[old_node_idx];$	
	<pre>/* Check if the replacement is beneficial</pre>	*/
13	if $p_{(new_node)} > \alpha \cdot p_{(old_node)}$ then	
	/* Replace <i>old_node</i> on device with <i>new_node</i>	*/
14	$B_{device}[old_node_idx] = new_node;$	
	/* Update <i>p_sum</i>	*/
15	$p_sum[device] + = p_{(new_node)}$	
16	else break;	
	=	

17 **return** $\{B_1, ..., B_n\}$

IOWA Methodology

Case2 Example



The ordered nodes: [1, 2, 3, 4, 5, 0]

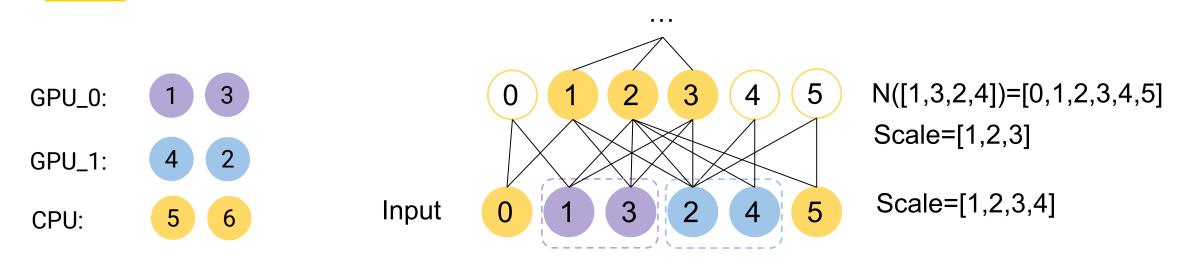
Limitation of data placement

If the access frequency is less skewed and the GPU memory is small, the data loading might be expensive even with algorithm1

• We still need to load feature embeddings from CPU in most of the cases

A locality-aware neighbor sampling technique to further reduce the data movement overhead

Locality-Aware Neighbor Sampling



The ordered nodes: [1, 2, 3, 4, 5, 0]

Multiply the sampling probabilities of the neighbor set of B with an adjustable factor

1 2 4 ... Maximum

Experimental Setup

Platform

A single machine with two Intel Xeon Gold 6248 CPUs and eight Nvidia Tesla V100 GPUs

- GPUs connected with NVLink Bridge: (2+2)GPU, (2*4)GPU
- GPUs connected with NVSwitch: 2GPU, 4GPU, 8GPU

Dataset

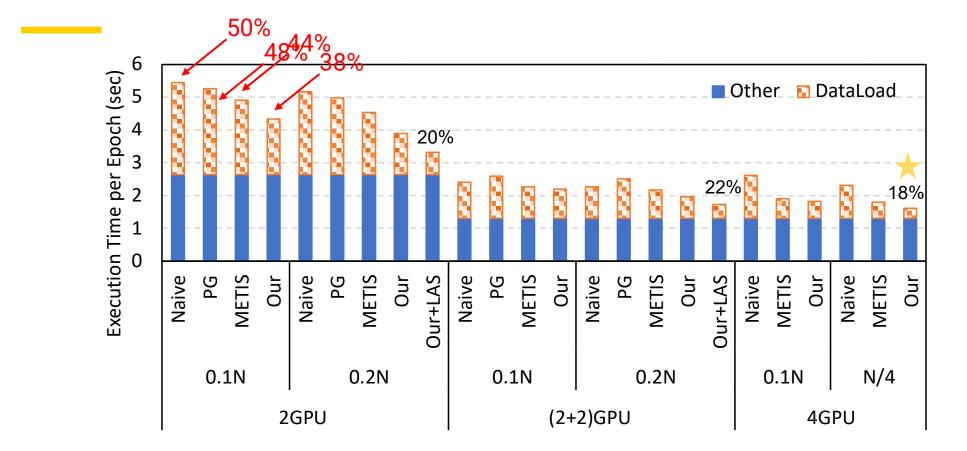
	Reddit	Yelp	Products	Papers100M	MAG240M
#nodes	233K	717K	2.4M	111M	122M
#edges	11.6M	7.0M	62M	1.6B	1.3B
feat_size	535MB	820MB	934MB	53GB	175GB

Baseline

- Naive partitioning
- Random partitioning
- METIS partitioning
- PaGraph partitioning (Lin et al., SoCC'20)

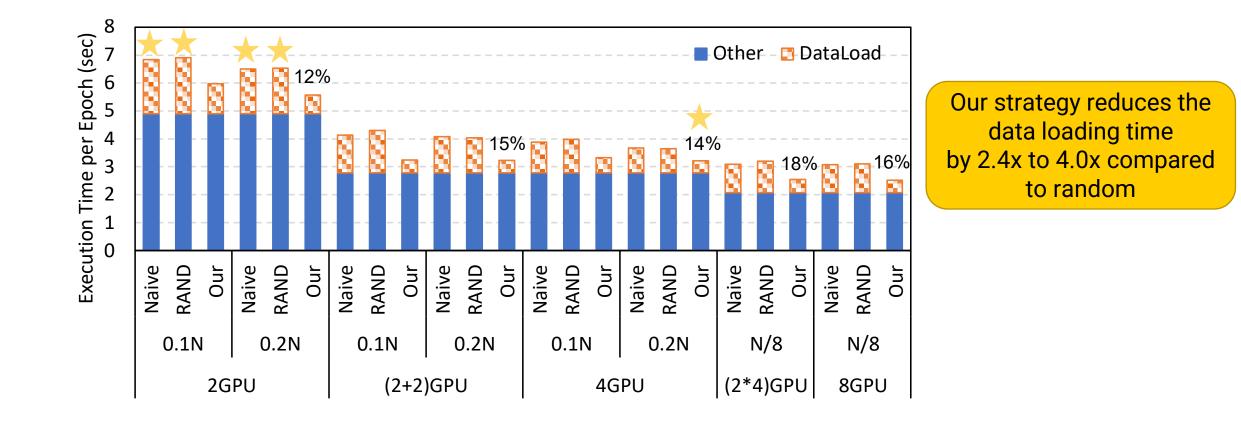
Experiments

Evaluation: Speedup on Reddit

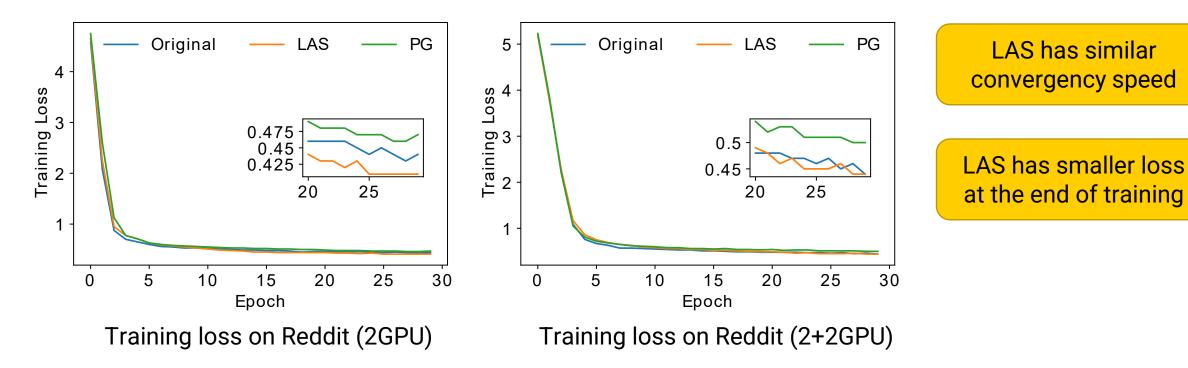


Evaluation: Speedup on Papers100M

Experiments



Evaluation: Accuracy



IOWA Experiments

Evaluation: Preprocess overhead

Our algorithm is much faster than the previous graph partitioning algorithms

	Reddit	Yelp	Products
PaGraph	382	1976	4753
METIS	17	15	83
Our	0.49	0.76	3.6

The execution time for dividing the graphs into four parts

• PaGraph has $O(N^2)$ time complexity

Experiments

• We have O(N) time and space complexity

- Aim to reduce the data loading overhead for largescale GNN training on multiple GPUs
- Propose a performance model of the data movement among CPU and GPUs and provide an efficient algorithm to find an optimal data placement strategy
- Propose a locality-aware neighbor sampling technique to further reduce the data loading overhead
- Reduce data movement overhead by 1.2x to 3.3x times with data placement strategy, and achieve up to 4.4x times speedup with locality-aware sampling

For information, doubts and clarifications, contact: shihui-song@uiowa.edu

