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Graph Neural Network (GNN)

Background

Graph Construction

Graph Neural Network Model

Feature Aggregation



Sampling-based GNN training

Background

• To reduce the computation, sampling-based GNN training samples a subset of neighbors 
and estimates the aggregation results based on the sampled nodes.



Analysis of DGL and PaGraph (PG)

Background

DGL
• Adopts METIS graph partitioning
• Assumes that the graph can be entirely 

stored on multiple GPUs

PaGraph
• Stores the graph on CPU and buffers the 

most frequently accessed nodes of each 
partition on GPU 



Motivation

Loading features is a bottleneck of training

Motivation

      

            
      

 

 
 
 
 

 
 

                    

                

            
  
  
  
  
  
 
  
  

  
 
  
  
  
  
               

• Assume that the GPU memory 
is small and we can only store 
20% of nodes that are most 
frequently accessed on each 
GPU



Performance Model

Methodology
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Cost Function of GPU_i:

Optimization Problem:
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 =Goal Find  the optimal configuration of   iB

: The nodes GPU_i needs to read from CPU and other GPUsiR

gpuB : The nodes saved on GPUs

cpuC : The cost of reading a node on CPU 

gpuC : The cost of reading a node on a different GPU



Case1 

Methodology

gpu cpuC C

Optimization Problem:
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When                      is maximized for every GPU_i, this formular can achieve the minimum value.E [ ]
iS i iS B

Rule1: We store nodes with the highest sampling probability on it 

: The nodes GPU_i needs to readiS

iB : The nodes saved on GPU_i local memory



Case2

Methodology

gpu cpuC C

Optimization Problem:
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Should store as many nodes 
as possible on all GPUs

Each GPU stores the same set of 
nodes with the highest sampling 
probability

Tradeoff



Case2 Algorithm

Methodology

( )( _ ) ( _ )gpuC p old node p new node−

( ) ( _ )cpu gpuC C p new node−

Increase of the second term

Decrease of the last term

( _ ) ( _ )
gpu

cpu

C
p new node p old node

C
Beneficial condition



Case2 Example

Methodology

The ordered nodes: [1, 2, 3, 4, 5, 0]

GPU_0: 

GPU_1: 

1 2

1 2

p_sum_0 = 0

p_sum_1 = 0

3 Beneficial?

Which GPU?

p_3 > 0.3*p_2 (   =0.3)   ✔

Keep at least one copy of 1 2

4 

p_sum_0 = p_sum_1   0

3 p_sum_0 = 1

p_4 > 0.3*p_1 (   =0.3)   ✔

Which GPU? p_sum_0 > p_sum_1   1

4 p_sum_1 = 5/6



Limitation of data placement  

If the access frequency is less skewed and the GPU memory is small, the data 
loading might be expensive even with algorithm1

• We still need to load feature embeddings from CPU in most of the cases

Limitation

A locality-aware neighbor sampling technique to further reduce the data

movement overhead 



Locality-Aware Neighbor Sampling 

Methodology

CPU: 65

Multiply the sampling probabilities of the neighbor set of B with an adjustable factor

The ordered nodes: [1, 2, 3, 4, 5, 0]

GPU_0: 

GPU_1: 

1

2

3

4

1 2 4 … Maximum



Experimental Setup

• Platform
A single machine with two Intel Xeon Gold 6248 CPUs and eight Nvidia Tesla V100 GPUs

– GPUs connected with NVLink Bridge: (2+2)GPU, (2*4)GPU

– GPUs connected with NVSwitch: 2GPU, 4GPU, 8GPU

• Dataset

• Baseline
– Naive partitioning

– Random partitioning

– METIS partitioning

– PaGraph partitioning (Lin et al., SoCC’20)

Experiments

Reddit Yelp Products Papers100M MAG240M

#nodes 233K 717K 2.4M 111M 122M

#edges 11.6M 7.0M 62M 1.6B 1.3B

feat_size 535MB 820MB 934MB 53GB 175GB



Evaluation: Speedup on Reddit

Experiments

 

 

 

 

 

 

 

 
  
   
 

 
  
  

 
 
 

 
  
   
 

 
  
  

 
 
 

 
 
  
  

 

 
  
   
 

 
  
  

 
 
 

 
  
   
 

 
  
  

 
 
 

 
 
  
  

 

 
  
  

 
  
  

 
 
 

 
  
  

 
  
  

 
 
 

                       

                

  
  
 
  
 
 
  
  

  
 
  
  
 
 
  
  
  
  

             

   

      

50%
48%44%

38%



Evaluation: Speedup on Papers100M

Experiments

 

 

 

 

 

 

 

 

 

 
  
  

 
 
 
 

 
 
 

 
  
  

 
 
 
 

 
 
 

 
  
  

 
 
 
 

 
 
 

 
  
  

 
 
 
 

 
 
 

 
  
  

 
 
 
 

 
 
 

 
  
  

 
 
 
 

 
 
 

 
  
  

 
 
 
 

 
 
 

 
  
  

 
 
 
 

 
 
 

                              

                            

  
  
 
  
 
 
  
  

  
 
  
  
 
 
  
  
  
  

             
   

      
      

Our strategy reduces the 
data loading time

by 2.4x to 4.0x compared 
to random



Evaluation: Accuracy

Experiments

            

     

 

 

 

 

 
  

  
  
 
  
 
 
 

             

    

     
    

     

            

     

 

 

 

 

 

 
  

  
  
 
  
 
 
 

             

    

    

   

Training loss on Reddit (2GPU) Training loss on Reddit (2+2GPU)

LAS has similar 
convergency speed

LAS has smaller loss 
at the end of training



Evaluation: Preprocess overhead

Experiments

Reddit Yelp Products

PaGraph 382 1976 4753

METIS 17 15 83

Our 0.49 0.76 3.6

The execution time for dividing the graphs into four parts

Our algorithm is much faster than the previous graph partitioning algorithms

• PaGraph has               time complexity
• We have            time and space complexity

2( )O N
( )O N



Summary

• Aim to reduce the data loading overhead for largescale GNN training on multiple 
GPUs

• Propose a performance model of the data movement among CPU and GPUs and 
provide an efficient algorithm to find an optimal data placement strategy

• Propose a locality-aware neighbor sampling technique to further reduce the data 
loading overhead

• Reduce data movement overhead by 1.2x to 3.3x times with data placement strategy, 
and achieve up to 4.4x times speedup with locality-aware sampling

Summary

For information, doubts and clarifications, contact: shihui-song@uiowa.edu
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