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Abstract

Graph partitioning is commonly used for dividing graph data for

parallel processing. While they achieve good performance for the

traditional graph processing algorithms, the existing graph parti-

tioning methods are unsatisfactory for data-parallel GNN training

on GPUs. In this work, we rethink the graph data placement prob-

lem for large-scale GNN training on multiple GPUs. We find that

loading input features is a performance bottleneck for GNN training

on large graphs that cannot be stored on GPU. To reduce the data

loading overhead, we first propose a performance model of data

movement among CPU and GPUs in GNN training. Then, based on

the performance model, we provide an efficient algorithm to divide

and distribute the graph data onto multiple GPUs so that the data

loading time is minimized. For cases where data placement alone

cannot achieve good performance, we propose a locality-aware

neighbor sampling technique to further reduce the data movement

overhead without losing accuracy. Our experiments with graphs of

different sizes on different numbers of GPUs show that our tech-

niques not only achieve smaller data loading time but also incur

much less preprocessing overhead than the existing graph parti-

tioning methods.

CCS Concepts: • Computing methodologies→ Parallel algo-

rithms; • Software and its engineering→ Distributed mem-

ory.
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1 Introduction

Graph Neural Networks (GNNs) have emerged as the state-of-the-

art models for machine learning tasks on graphs [4, 6, 16, 31, 35,

36]. Due to their superior accuracy, GNNs play an important and

increasing role in many application domains, including content

recommendation [30], traffic prediction [34], drug discovery [19],

and molecular property prediction [6].

Different from the traditional graph processing algorithms, GNNs

make predictions on graphs with node features. The basic idea is to

learn a vector representation (also called embedding) of each node
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by recursively aggregating the features of neighboring nodes. The

embeddings are used for downstream tasks such as node classifica-

tion [4, 16] or link prediction [35, 36]. As the feature of each node

contains hundreds or thousands of attributes, the data processed

by GNNs are much larger than the graph structure itself. For in-

stance, a graph with 10M nodes and feature vector length of 1K

needs at least 40GB memory to store node features. This exceeds

the memory capacity of most GPUs, making it challenging to train

GNNs efficiently on large graphs.

To support large graphs, a straightforward approach is to par-

tition the graph and distribute the node features onto multiple

GPUs. The current GNN systems either take an off-the-shelf graph

partitioning method [21, 37] or propose heuristic partitioning meth-

ods [14, 20] for this task. For example, DGL [37] adopts METIS [15]

graph partitioning. It assumes that the graph can be entirely stored

onmultiple GPUs. PaGraph [20] uses a heuristic partitioningmethod

based on training nodes. For large graphs that exceed the memory

capacity of multiple GPUs, it stores the graph on CPU and buffers

the most frequently accessed nodes of each partition on GPU.

We find that the existing graph partitioning methods are unsat-

isfactory for GNN training in terms of both data loading efficiency

and preprocessing overhead. Figure 1 shows the breakdown epoch

time of GNN training with the graph partitioning methods in Pa-

Graph [20] and DGL [37]. We assume that the GPU memory is

small and we can only store 20% of nodes that are most frequently

accessed on each GPU. The figure shows that loading the input

features is a performance bottleneck in GNN training when the

graph data cannot be entirely put on GPU. (The data loading time

of DGL reported in PaGraph paper is even longer because they do

not use GPU buffer for DGL.) With two GPUs, the data loading

time accounts for more than 40% of the total execution time. If we

add two more GPUs, we have 80% of nodes stored on four GPUs;

however, the data loading still takes about 40% of the total execu-

tion time. The results suggest that the existing graph partitioning

methods do not utilize the aggregate GPU memory efficiently for

GNN training. The graph partitioning procedure is also expensive.

PaGraph partitioning has 𝑂 (𝑁 2) time complexity where 𝑁 is the

number of nodes in graph, and it takes a long time for large graphs.

DGL (METIS) partitioning is faster, but it runs out of memory for

the large graphs used in our experiments.

To overcome the limitations of the existing systems, we rethink

the graph data placement problem for data-parallel GNN training in

this work. The questionwe aim to answer is, given a large graph that

cannot be stored on a single device, how can we divide and place

the graph data across devices so that the overall data movement

overhead is minimized? We first present a performance model

of data movement among CPU and GPUs in GNN training and

formulate the data placement problem as an optimization problem.

Then, we propose an efficient algorithm to find the optimal data
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Figure 1. Ratio of data loading time to total execution time in GNN

training with PaGraph (PG) and DGL.

placement strategy. Compared to the existing graph-partitioning-

based methods, our data placement strategy not only achieves a

lower data movement overhead but also allows global neighbor

aggregation and shuffling, thus leading to better convergence of

the training algorithm. Moreover, our data placement algorithm is

fast, with 𝑂 (𝑁 ) time and space complexity. The algorithm is run

only once before the training process, and its overhead is negligible

compared to the total training time.

In cases where the performance with the optimal data placement

is still unsatisfactory (for example, when the GPU memory is small

and most nodes are stored on CPU), we propose a locality-aware

neighbor sampling technique to further reduce the data loading

overhead. The idea is to increase the access frequency of nodes

on GPU so that accesses to CPU are reduced. We show that our

sampling technique preserves the unbiased estimation of neighbor

aggregation result in each layer. By carefully adjusting the parame-

ters of our sampling method, we can reduce the data loading time

without impairing the convergence speed of the training algorithm.

We evaluate our technique with graphs of different sizes on 2∼8

GPUs. The results show that our data placement strategy reduces

the data loading time by 1.2x to 3.3x compared with the existing

graph partitioning method. Combining our data placement strat-

egy with locality-aware neighbor sampling, we achieve up to 4.4x

speedup for data loading in large-scale GNN training.

2 Background

We now give a background on GNN and sampling-based GNN

training. Figure 2b shows the computation of a two-layer Graph

Convolutional Network (GCN) [16]. We use x
(0)
𝑖 to denote the

feature vector of node-𝑖 . The feature vectors of each node and its

neighboring nodes are first aggregated by a 𝑀𝑒𝑎𝑛 function, and

we use x
(𝑙)
𝑖 to denote the aggregation result of node-𝑖 in layer 𝑙 .

This aggregation operation is also called graph convolution and

is the key difference between different GNN models. For example,

GraphSAGE [7] computes the𝑀𝑎𝑥 of the neighboring nodes, while

some othermodels use 𝑆𝑢𝑚 [29]. The aggregation result is given to a

linear function (𝐿𝑖𝑛𝑒𝑎𝑟 ) and an activation function (𝑅𝑒𝐿𝑈 ) to obtain

the intermediate embedding y
(1)
𝑖 . The intermediate embeddings are

further aggregated for a few layers to obtain the output embeddings.

To train a GNN, we sample a batch of training nodes and compute

their output embeddings in each iteration. The output embeddings

are used to make predictions, and the predicted values are com-

pared with the ground-truth labels to obtain a loss. The loss is then

back-propagated through the network to adjust the model parame-

ters. From Figure 2b, we can see that the number of nodes involved

in the computation in each training iteration is exponential w.r.t.

the number of layers. In this example, we need to load and aggre-

gate the features of all nodes in the graph to compute the output

embedding of a single node x3. This incurs a large data movement

and computation overhead when the graph is large.

To reduce the computation, various neighbor sampling methods

have been proposed for GNN training [2, 3, 7, 18, 30, 32, 41]. The

idea is to sample a subset of neighbors and estimate the aggregation

results based on the sampled nodes. As shown in Figure 2c, instead

of computing the accurate value of x
(1)
1 with all of x

(0)
0 , x

(0)
1 , x

(0)
2

and x
(0)
3 , we can estimate the mean of the four feature vectors by

randomly sample three of them. Suppose the sampling probabilities

of the four vectors are 𝑝0, 𝑝1, 𝑝2, 𝑝3 and node-0, 2, 3 are sampled. The

estimate can be computed as x
(0)
0 /(4𝑝0) + x

(0)
2 /(4𝑝2) + x

(0)
3 /(4𝑝3).

More generally, to estimate the aggregation result of node 𝑖’s neigh-
bors i.e.,

∑
𝑗 ∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖) 𝑤𝑖 𝑗x𝑗 where x𝑗 is the feature of node 𝑗 in

a certain layer, and 𝑤𝑖 𝑗 is the weight of edge-(𝑖, 𝑗 ), we can define

a sequence of random variables 𝜉 𝑗 ∼ Bernoulli(𝑞 𝑗 ) where 𝑞 𝑗 is the
probability that node 𝑗 in the neighbor list is sampled. We can have

an unbiased estimate of the aggregation result as∑
𝑗 ∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖)

1

𝑞 𝑗
𝜉 𝑗𝑤𝑖 𝑗x𝑗 . (1)

Different sampling methods have different ways of determining 𝑞 𝑗 ,
but they all use this formula to estimate the results.

Neighbor sampling allows us to train GNNs on very large graphs

with millions to hundreds of millions of nodes. Due to the GPU

memory limitation, the graph has to be stored on CPU and copied

to GPU during the training process. There are mainly two types of

data need to be moved. One is the graph structure (i.e., the sampled

adjacency matrix); the other one is the input feature vectors. The

existing sampling-based GNN training systems [30, 32, 41] generate

the sampled adjacency matrices with multiple processes on CPU

and copy them to GPU asynchronously in each iteration. Since the

sampled adjacency matrices are small and sparse, the overhead of

copying the sampled adjacency matrices can be hidden by overlap-

ping the data transfer with the training procedure on GPU. The

main data movement overhead is for copying the input features.

As shown in Figure 1, loading the input features is a performance

bottleneck of sampling-based GNN training. The focus of this work

is to reduce this data loading overhead.

3 Minimizing Data Movement For Input
Features

We consider the data movement problem in data-parallel GNN

training with sampled neighbor aggregation on multiple GPUs

within a single machine. That is, each GPU maintains a copy of

the GNN model and computes a local gradient with sampled neigh-

bor aggregation, and the gradients are averaged among all GPU in

each iteration. This is the most common setup for training GNNs

on large graphs [9]. The GPUs can be organized into groups of

two connected through NVLink Bridge, as shown Figure 3a. Or

they can be connected all together through NVSwitch as shown in

Figure 3b. These are typical configurations of modern GPU server-

s/workstations for deep learning. The NVLinks among GPUs are

not necessary for our algorithm to work, but they allow us to use

the aggregate memory of multiple GPUs more efficiently.

We assume that each GPU-𝑖 can only store the feature vectors

of a set of nodes 𝐵𝑖 . If the memory of each GPU is large enough to
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(a) An example graph: x
(0)
𝑖 represents the feature

vector of node-𝑖

(b) Compute the output embedding of node-2 with full
neighbor aggregation

(c) Estimate the output embedding of node-2 with sam-
pled neighbor aggregation

Figure 2. Computation of a two-layer GCN.

(a) NVLink Bridge (b) NVSwitch

Figure 3. Typical configurations of multi-GPU systems with in-

terconnects among GPUs. We store the input features of a set of

nodes 𝐵𝑖 on each GPU-𝑖 .

hold the entire graph along with the GNN model and intermediate

embeddings, the problem will be trivial. However, this is not the

case for large graphs and the current GPUs of 10∼30GB of memory.

With this setup, we now give a performance model of the data

movement of input features. Then, we will provide an efficient

algorithm to minimize the data movement overhead.

3.1 Performance Model

Since GPU-𝑖 stores a set of nodes 𝐵𝑖 , the nodes that are stored on

all GPUs are

𝐵𝑔𝑝𝑢 = 𝐵1 ∪ . . . ∪ 𝐵𝑛 .

We assume that the cost of reading a node on the same GPU is

zero, the cost of reading a node on a different GPU is𝐶𝑔𝑝𝑢 , and the

cost of reading from CPU is 𝐶𝑐𝑝𝑢 . In every training iteration, each

GPU needs to read input features from either CPU or one of the

GPUs. Suppose GPU-𝑖 needs to read a set of nodes 𝑆𝑖 . We denote

the remote nodes that are not on GPU-𝑖 as

𝑅𝑖 = 𝑆𝑖 \ 𝐵𝑖 = 𝑆𝑖 − (𝑆𝑖 ∩ 𝐵𝑖 ). (2)

For every node in 𝑅𝑖 , we need to decide whether to fetch it from

CPU or from a different GPU. That is, we need to divide 𝑅𝑖 into two
sets 𝑅𝑖,𝑐𝑝𝑢 and 𝑅𝑖,𝑔𝑝𝑢 , where 𝑅𝑖,𝑐𝑝𝑢 are the nodes read from CPU

and 𝑅𝑖,𝑔𝑝𝑢 ∈ 𝐵𝑔𝑝𝑢 are the nodes read from other GPUs. The cost

of reading 𝑆𝑖 can then be written as

𝐶𝑐𝑝𝑢 |𝑅𝑖,𝑐𝑝𝑢 | +𝐶𝑔𝑝𝑢 |𝑅𝑖,𝑔𝑝𝑢 |.

If 𝐶𝑔𝑝𝑢 < 𝐶𝑐𝑝𝑢 , we should fetch as many nodes as possible from

GPUs. The minimum cost is achieved when 𝑅𝑖,𝑔𝑝𝑢 = 𝑅𝑖 ∩ 𝐵𝑔𝑝𝑢 . If
𝐶𝑔𝑝𝑢 ≥ 𝐶𝑐𝑝𝑢 , we should fetch all nodes from CPU, i.e., 𝑅𝑖,𝑔𝑝𝑢 = ∅

and 𝑅𝑖,𝑐𝑝𝑢 = 𝑅𝑖 . More formally, we define the cost of reading 𝑆𝑖 by
GPU-𝑖 as

𝐶𝑖 (𝐵) =

{
𝐶𝑐𝑝𝑢 |𝑅𝑖 \ 𝐵𝑔𝑝𝑢 | +𝐶𝑔𝑝𝑢 |𝑅𝑖 ∩ 𝐵𝑔𝑝𝑢 |, if 𝐶𝑔𝑝𝑢 < 𝐶𝑐𝑝𝑢 ;

𝐶𝑐𝑝𝑢 |𝑅𝑖 |, if 𝐶𝑔𝑝𝑢 ≥ 𝐶𝑐𝑝𝑢 .

(3)

Note that𝐶𝑖 is a function of𝐵 = {𝐵1, . . . , 𝐵𝑛} and is dependent on 𝑆𝑖 .
The value we want to minimize is its expectation E𝑆𝑖∼D [𝐶𝑖 ]. Since
the GPUs run in parallel, we minimize the maximum cost across

all GPUs. The problem can then be formulated as a constrained

optimization problem:

min max
𝑖∈[1,𝑛]

(
E𝑆𝑖∼D [𝐶𝑖 (𝐵)]

)
,

subject to |𝐵𝑖 | ≤ 𝐵𝑆𝐼𝑍𝐸, 𝑖 = 1, . . . , 𝑛 (4)

where 𝐵𝑆𝐼𝑍𝐸 is the maximum number of nodes that can be stored

on each GPU. Our goal is to find the optimal configuration of 𝐵𝑖
that minimize max𝑖 (E𝑆𝑖 [𝐶𝑖 ]) within the memory size limit.

3.2 An Efficient Solution

To solve Problem (4), we first consider the trivial case where𝐶𝑔𝑝𝑢 ≥

𝐶𝑐𝑝𝑢 , i.e., the GPU is not connected with other GPUs through

NVLink. In this case, we should read data from CPU. According to

(3) and (2), the optimization objective can be written as

max
𝑖

(E𝑆𝑖 [𝐶𝑖 ]) = 𝐶𝑐𝑝𝑢 max
𝑖

(E𝑆𝑖 [|𝑅𝑖 |]) (5)

= 𝐶𝑐𝑝𝑢 max
𝑖

(E𝑆𝑖 [|𝑆𝑖 \ 𝐵𝑖 |])

= 𝐶𝑐𝑝𝑢E𝑆 [|𝑆 |] −𝐶𝑐𝑝𝑢 min
𝑖
E𝑆𝑖 [|𝑆𝑖 ∩ 𝐵𝑖 |])

where E𝑆 [|𝑆 |] is the expected number of sampled input nodes

and is a constant number for all GPUs. It is easy to verify that,

when E𝑆𝑖 [|𝑆𝑖 ∩ 𝐵𝑖 |] is maximized for every GPU-𝑖 , (5) achieves the
minimum value. Suppose there are 𝑁 nodes in the graph. We can

represent 𝐵𝑖 as a vector bi ∈ {0, 1}𝑁 where bi [ 𝑗] = 1 indicates that

node- 𝑗 is stored on GPU-𝑖 . We can also represent 𝑆𝑖 as a vector

of random variables si = [𝜉1, 𝜉2, . . . 𝜉𝑁 ]
𝑇 where 𝜉 𝑗 ∼ Bernoulli(𝑝 𝑗 )

and 𝑝 𝑗 is the probability of node 𝑗 being sampled. Then, we can

rewrite the objective in (5) as

𝐶𝑐𝑝𝑢E[|s|] −𝐶𝑐𝑝𝑢 min
𝑖

(
|bi
𝑇
E[si] |

)
where | · | represents the ℓ1 norm and E[si] = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ]

𝑇 . To

minimize the cost, we need to maximize |bi
𝑇
E[si] | for each GPU-𝑖 .

This leads to the first rule of our data placement strategy:

Rule 1: If a GPU is not connected to other GPUs, we store nodes

with the highest sampling probability on it.
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Algorithm 1: Distributing node features onto multiple

GPUs with fast interconnects
Input: 𝛼 ; #nodes: 𝑁 ; #GPUs: 𝑛; Sampling probability: 𝑝 ; Buffer size:

𝐵𝑆𝐼𝑍𝐸
Output: 𝐵 = {𝐵1, . . . , 𝐵𝑛 }
/* Sort nodes by probability 𝑝 in descending order */

1 𝑉 = sort_nodes(𝑁, 𝑝) ;
/* Initialize buffer on each GPU with nodes of highest

sampling probabilities */

2 for 𝑖 = 1 to 𝑛 do

3 𝐵𝑖 = [𝑉 [0],𝑉 [1], . . .𝑉 [𝐵𝑆𝐼𝑍𝐸 − 1] ];

4 𝑝_𝑠𝑢𝑚 = [0.0, . . . , 0.0];

5 for 𝑖 = 0 to (min(𝑁,𝑛 · 𝐵𝑆𝐼𝑍𝐸) − 𝐵𝑆𝐼𝑍𝐸 − 1) do

6 if 𝑖 mod 𝑛 == 0 then
/* Sort GPUs by 𝑝_𝑠𝑢𝑚 in ascending order */

7 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 = sort_device(𝑛, 𝑝_𝑠𝑢𝑚) ;

/* Do not change last device in each round */

8 if 𝑖 mod 𝑛 == 𝑛 − 1 then continue;

/* Get device in the sorted order */

9 𝑑𝑒𝑣𝑖𝑐𝑒 = 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 [𝑖 mod 𝑛];
/* Select the next node in 𝑉 */

10 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 = 𝑉 [𝑖 + 𝐵𝑆𝐼𝑍𝐸 ] ;
/* Select a duplicate node on device */

11 𝑜𝑙𝑑_𝑛𝑜𝑑𝑒_𝑖𝑑𝑥 = 𝐵𝑆𝐼𝑍𝐸 − 1 − 
𝑖/𝑛�;

12 𝑜𝑙𝑑_𝑛𝑜𝑑𝑒 = 𝑉 [𝑜𝑙𝑑_𝑛𝑜𝑑𝑒_𝑖𝑑𝑥 ];
/* Check if the replacement is beneficial */

13 if 𝑝 (𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 ) > 𝛼 · 𝑝 (𝑜𝑙𝑑_𝑛𝑜𝑑𝑒 ) then
/* Replace 𝑜𝑙𝑑_𝑛𝑜𝑑𝑒 on device with 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 */

14 𝐵𝑑𝑒𝑣𝑖𝑐𝑒 [𝑜𝑙𝑑_𝑛𝑜𝑑𝑒_𝑖𝑑𝑥 ] = 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 ;
/* Update 𝑝_𝑠𝑢𝑚 */

15 𝑝_𝑠𝑢𝑚 [𝑑𝑒𝑣𝑖𝑐𝑒 ]+ = 𝑝 (𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 )

16 else break;

17 return {𝐵1, . . . , 𝐵𝑛 }

This rule is intuitive – For a standalone GPU, storing the nodes

that are most frequently accessed on the GPU gives us minimum

overall data loading time.

We next consider the case where 𝐶𝑔𝑝𝑢 < 𝐶𝑐𝑝𝑢 , i.e., the GPU is

connected with other GPUs through NVLink. According to (3) and

(2), the optimization objective can be written as

max
𝑖

(
E𝑆𝑖 [𝐶𝑖 ]

)
(6)

=max
𝑖

(
𝐶𝑐𝑝𝑢E𝑆𝑖

[

𝑅𝑖 \ 𝐵𝑔𝑝𝑢 

] +𝐶𝑔𝑝𝑢E𝑆𝑖 [

𝑅𝑖 ∩ 𝐵𝑔𝑝𝑢


] )

=max
𝑖

(
𝐶𝑐𝑝𝑢E𝑆𝑖 [|𝑅𝑖 |] −

(
𝐶𝑐𝑝𝑢 −𝐶𝑔𝑝𝑢

)
E𝑆𝑖

[

𝑅𝑖 ∩ 𝐵𝑔𝑝𝑢


] )

=𝐶𝑐𝑝𝑢E𝑆 [|𝑆 |] −
(
𝐶𝑐𝑝𝑢 −𝐶𝑔𝑝𝑢

)
E𝑆

[
|𝑆 ∩ 𝐵𝑔𝑝𝑢 |

]
−min

𝑖

(
𝐶𝑔𝑝𝑢E𝑆𝑖 [|𝑆𝑖 ∩ 𝐵𝑖 |]

)
.

To minimize the cost, we need to maximize the last two terms.

The last term suggests that each GPU stores the same set of nodes

with the highest sampling probability. This configuration how-

ever hurts the overall performance because the second last term(
𝐶𝑐𝑝𝑢 −𝐶𝑔𝑝𝑢

)
E𝑆

[
|𝑆 ∩ 𝐵𝑔𝑝𝑢 |

]
suggests that we should store as

many nodes as possible on all GPUs. The two terms illustrate a

tradeoff between the data access efficiency on a single GPU and the

overall efficiency on all GPUs. We now propose an algorithm that

explores the tradeoff and find an optimal configuration.

As shown in Algorithm 1, we first obtain an ordered set of the

nodes (𝑉 ) such that 𝑝 (𝑉 [𝑖 ]) ≥ 𝑝 (𝑉 [𝑖+1]) , and we store the nodes

with the highest sampling probability on each GPU (line 2 and 3).

This initial configuration achieves the maximum value for the last

term in (6) but results in a small value for the second last term. To ex-

plore the tradeoff between the two terms, the algorithm tries to itera-

tively replace the duplicate nodes on different GPUswith new nodes

from𝑉 [𝐵𝑆𝐼𝑍𝐸] to𝑉 [𝑁−1] (line 5). In the first iteration, it tries to re-

place𝑉 [𝐵𝑆𝐼𝑍𝐸−1] in 𝐵1 with𝑉 [𝐵𝑆𝐼𝑍𝐸]. By doing so, we decrease
the last term of (6) by𝐶𝑔𝑝𝑢 (𝑝 (𝑉 [𝐵𝑆𝐼𝑍𝐸−1])−𝑝 (𝑉 [𝐵𝑆𝐼𝑍𝐸 ]) ). However,

it also increases the second last term by
(
𝐶𝑐𝑝𝑢 −𝐶𝑔𝑝𝑢

)
𝑝 (𝑉 [𝐵𝑆𝐼𝑍𝐸 ]) .

If the increase is greater than the decrease, i.e.,

𝐶𝑐𝑝𝑢𝑝 (𝑉 [𝐵𝑆𝐼𝑍𝐸 ]) > 𝐶𝑔𝑝𝑢𝑝 (𝑉 [𝐵𝑆𝐼𝑍𝐸−1]) ,

this replacement is beneficial. More generally, in each iteration of

the algorithm, we try to replace the duplicate node that has the

lowest sampling probability (𝑜𝑙𝑑_𝑛𝑜𝑑𝑒) on one of the GPUs with

the highest probability node that is not stored on GPU (𝑛𝑒𝑤_𝑛𝑜𝑑𝑒).
If

𝑝 (𝑛𝑒𝑤_𝑛𝑜𝑑𝑒) >
𝐶𝑔𝑝𝑢

𝐶𝑐𝑝𝑢
𝑝 (𝑜𝑙𝑑_𝑛𝑜𝑑𝑒) , (7)

the replacement is beneficial, and we perform the replacement (line

14). Otherwise, the algorithm stops (line 16). Note that in the actual

implementation we use a parameter 𝛼 ∈ [0, 1) to check the con-

dition in (7) because 𝐶𝑐𝑝𝑢 and 𝐶𝑔𝑝𝑢 are unknown. Since 𝐶𝑐𝑝𝑢 and

𝐶𝑔𝑝𝑢 are mostly determined by the hardware and are independent

from the workload, we can tune this 𝛼 for a hardware configuration

once and use it for all the training tasks. To ensure each GPU has

a similar data movement cost, the algorithm maintains the sum

of sampling probabilities of the new nodes (𝑝_𝑠𝑢𝑚) on each GPU.

In each round of replacement, it selects the GPUs with 𝑝_𝑠𝑢𝑚 in

ascending order (line 6,7,9). We try to replace the same node on

the first 𝑛 − 1 devices with new nodes in 𝑉 . The last device is un-
changed because we need to keep at least one copy of the node on

GPU (line 8). Because the sampling probabilities of the new nodes

are decreasing, this replacement order ensures that different GPUs

have similar values of 𝑝_𝑠𝑢𝑚.

Algorithm 1 has 𝑂 (𝑁 ) time complexity because it runs for at

most 𝑁 iterations and each iteration takes a constant time (as-

suming the number of devices 𝑛 is a small constant). The space

complexity is also 𝑂 (𝑁 ).

Rule 2: For a group of GPUs with fast interconnects, we use

Algorithm 1 to distribute the nodes onto different GPUs.

Note that Algorithm 1may put duplicate nodes on different GPUs.

This is the main difference between our data placement strategy

and graph partitioning. Intuitively, for nodes with high sampling

probability, we should store a copy of them on each GPU so that

their features can be read locally. The number of duplicate nodes is

also affected by the parameter 𝛼 in the algorithm. A larger 𝛼 means

that the communication among GPUs is relatively expensive. The

larger the 𝛼 , the more likely the algorithm stops early, and thus the

more duplicate nodes we may have.

Example: Let us consider the graph in Figure 2a. According to

Figure 2b, to compute the output embedding of node-2 we need to

access all of the six nodes. Similarly, to compute the output embed-

ding of node-0 we need to access node-0, 1, 2, 3. It is easy to see that
the access frequency of a node is the number of training nodes in
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its 𝐿-hop neighbors where 𝐿 is the number of GNN layers. In this

example, the access frequency of the six nodes is 𝑓 = [4, 6, 6, 6, 5, 5].
We use 𝑓 /𝑁𝑡 (𝑁𝑡 is the number of training nodes) as an estimation

of the sampling probability and give 𝑝 = [4/6, 1, 1, 1, 5/6, 5/6] to Al-
gorithm 1. Suppose we have two GPUs connected with NVLink and

each GPU can store at most 2 nodes. The algorithm first sorts the

six nodes by 𝑝 and obtain an ordered set of nodes𝑉 = [1, 2, 3, 4, 5, 0].
Initially, the algorithm stores the two nodes with highest sampling

probability on both GPUs, i.e., 𝐵1 = [1, 2] and 𝐵2 = [1, 2]. Suppose
we set 𝛼 to 0.3. In the first iteration of the algorithm, we try to

replace node-2 on GPU-1 with node-3 in 𝑉 . Because 𝑝3 > 𝛼𝑝2
(1 > 0.3 ∗ 1), which means the replacement is beneficial, we per-

form this replacement, and 𝐵1 becomes [1, 3]. The second iteration

is skipped by line 8 in the algorithm because we want to keep

node-2 on GPU-2. In the third iteration, we sort the two devices

based on their 𝑝_𝑠𝑢𝑚. The 𝑝_𝑠𝑢𝑚 of GPU-2 is smaller, so we try

to replace node-1 on GPU-2 with node-4 in 𝑉 . Because 𝑝4 > 𝛼𝑝1
(5/6 > 0.3 ∗ 1), we change 𝐵2 to [4, 2].

During the training process, each GPU loads the input features

from three places: its own memory, the memory of other GPUs in

the same group, or the CPU memory. Each GPU has a 𝑑𝑒𝑣_𝑛𝑢𝑚
array and a 𝑏𝑢𝑓 _𝑝𝑜𝑠 array for locating the nodes: 𝑑𝑒𝑣_𝑛𝑢𝑚[𝑖] indi-
cates which device we should read node-𝑖 from and 𝑏𝑢𝑓 _𝑝𝑜𝑠 [𝑖] is
the index of node-𝑖 in𝑑𝑒𝑣_𝑛𝑢𝑚[𝑖]’s buffer. In the above example, we

have 𝑑𝑒𝑣_𝑛𝑢𝑚 = [−1, 1, 2, 1, 2,−1,−1], 𝑏𝑢𝑓 _𝑝𝑜𝑠 = [0, 0, 1, 1, 0, 5, 6]
on GPU-1. Here, we use -1 as the CPU device number. The two

arrays indicate that node-0 should be read from location 0 of the

CPU buffer, and node-1 should be read from location 0 of GPU-1’s

buffer. The 𝑑𝑒𝑣_𝑛𝑢𝑚 and 𝑏𝑢𝑓 _𝑝𝑜𝑠 array could be different on dif-

ferent GPUs. If two GPUs hold the same node, they will read the

node from their local memory. In this example, the two arrays are

the same on GPU-1 and GPU-2 because there is no duplicate nodes

on the two GPUs.

4 Locality-Aware Neighbor Sampling

The same as any caching system, our data placement strategy works

most efficiently when the access frequency is skewed, i.e., most

accesses are made to a small number of nodes. This assumption

holds in most cases due to the irregularity of real-world graphs.

However, when the access frequency is less skewed and the GPU

memory is small, the data loading might be expensive even with

the optimal placement of graph data. To further reduce the data

movement overhead, we present a locality-aware neighbor sampling

technique in this section.

Our main idea is to increase the sampling probability of nodes on

GPU. If a GPU accesses its local nodes or nodes on other GPUs in

the same group more frequently, the overall data loading time will

be reduced. More specifically, suppose 𝐵 is the set of nodes stored

on a group of GPUs. Our goal is to increase the access frequency of

𝐵 in the input layer. To achieve this, we can directly increase the

𝑞 𝑗 in Formula (1) for 𝑗 in 𝐵 in the input layer. This however may

not be effective because the nodes that are sampled in the input

layer are determined by the nodes sampled in the second layer. If

the second layer does not have nodes connected to nodes in 𝐵, we
will not have 𝑞 𝑗 to increase in the input layer. Therefore, to have

more nodes in 𝐵 in the first layer, we can increase the 𝑞 𝑗 for 𝑗 in
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐵) in the second layer. Similarly, to have more nodes in

Algorithm 2:Adjusting scale factor 𝑠 based on data loading
overhead
Input: 𝑙𝑡 ; 𝑢𝑡 ;𝑀𝐴𝑋𝑆 ; Ratio of data loading time to total execution

time in previous epoch: 𝑟 ; Previous value of 𝑠 : 𝑝𝑟𝑒 ; Is 𝑠
𝑓 𝑖𝑥𝑒𝑑

1 if 𝑓 𝑖𝑥𝑒𝑑 == 𝑓 𝑎𝑙𝑠𝑒 then
2 if 𝑠 ≥ 𝑀𝐴𝑋𝑆 then 𝑓 𝑖𝑥𝑒𝑑 = 𝑡𝑟𝑢𝑒 ;
3 else if 𝑟 > 𝑢𝑡 then 𝑝𝑟𝑒 = 𝑠 ; 𝑠 = 𝑠 ∗ 2 ;
4 else if 𝑟 < 𝑙𝑡 and 𝑠! = 1 then 𝑠 = (𝑠 + 𝑝𝑟𝑒)/2 ;

5 else 𝑓 𝑖𝑥𝑒𝑑 = 𝑡𝑟𝑢𝑒 ;

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐵) in the second layer, we want to increase the 𝑞 𝑗 for
nodes in 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐵)) in the third layer.

In order to preserve the relative importance of different nodes,

we increase the sampling probability of nodes in the neighbor sets

by multiplying them with the same factor 𝑠 . To ensure the same

number of neighbors are sampled in expectation, we need to re-

scale the new sampling probability so that their sum equals to

the sum of the original sampling probability. More formally, we

compute the new sampling probability of nodes with the following

formula:

𝑞𝑛𝑒𝑤𝑗 =

{
𝑠𝑞 𝑗/𝑀 if 𝑗 ∈ 𝑄𝑙
𝑞 𝑗/𝑀 if 𝑗 ∉ 𝑄𝑙

(8)

where 𝑀 =
∑
𝑗 𝑞 𝑗/

(∑
𝑗 ∈𝑄𝑙

𝑠𝑞 𝑗 +
∑
𝑖∉𝑄𝑙

𝑞 𝑗
)
is the normalization

factor, and𝑄𝑙 represents the neighbor set in layer-𝑙 . We have𝑄1 = 𝐵
in the input layer, 𝑄2 = 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐵) in the second layer, and

so on. The formula ensures that 𝑞𝑛𝑒𝑤𝑖 /𝑞𝑛𝑒𝑤𝑗 = 𝑞𝑖/𝑞 𝑗 = 𝑥,∀𝑖, 𝑗 ∈

𝑄 , meaning that node-𝑖 is still 𝑥 times more likely to sampled

than node- 𝑗 after probability increasing. The normalization factor

ensures
∑
𝑗 𝑞
𝑛𝑒𝑤
𝑗 =

∑
𝑗 𝑞 𝑗 , so the same number of neighbors will

be sampled in expectation.

It is easy to see that our locality-aware neighbor sampling does

not affect the unbiasedness of the estimation result. That is, we

still have E
[∑

𝑗
1
𝑞 𝑗
𝜉 𝑗𝑤𝑖 𝑗x𝑗

]
=
∑
𝑗 𝑤𝑖 𝑗x𝑗 . However, as the sampling

probability is skewed towards the nodes on GPU, the estimation

variancemay increase, whichmay lead to slower convergence of the

training algorithm. We explore this tradeoff between data loading

efficiency and convergence rate by adjusting 𝑠 adaptively. Initially,
we set 𝑠 = 1, and the original neighbor sampling method is used.

At the end of each epoch, we check if the ratio of data loading time

to total execution time is greater than an upper threshold 𝑢𝑡 . If it is
greater, we multiply 𝑠 by 2. If not, we check if the ratio is smaller

than a lower threshold 𝑙𝑡 . If the ratio is greater than 𝑙𝑡 , we fix 𝑠 and
use it for the rest of the training process. If the ratio is smaller than

𝑙𝑡 , we set 𝑠 to the average of its current value and its previous value.
Algorithm 2 summarize this procedure. We set a maximum value

𝑀𝐴𝑋𝑆 for 𝑠 to ensure good convergence of the training algorithm.

In our experiments, we find that if we set𝑀𝐴𝑋𝑆 to 8, the model can

be trained to the same accuracy with the same number of training

iterations.

For large graphs, the neighbor set𝑄𝑙 can grow fast as the neural

network goes deeper. Instead of maintaining all the neighboring

nodes, we only store a small subset 𝑄 ′
𝑙
that have the most connec-

tions to 𝐵 in each layer. This is because the nodes are multiplied

with the same scale factor and increasing the probability of many

nodes cannot concentrate the memory accesses to a small number
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Table 1. Graph datasets.

reddit yelp products papers100M MAG240M

#nodes 233K 717K 2.4M 111M 122M

#edges 11.6M 7.0M 62M 1.6B 1.3B

feat_size 535MB 820MB 934MB 53GB 174GB

of nodes. In the extreme case, if 𝑄𝑙 contains all the nodes in the

graph, the new sampling probability computed with (8) is the same

as the original sampling probability. To obtain 𝑄 ′
𝑙
, we represent 𝐵

as a vector 𝑣1 ∈ {0, 1}𝑁 where 𝑣1 [𝑖] = 1 indicates that node-𝑖 is in
𝐵. In the input layer, we simply set 𝑄 ′

1 = 𝐵. In the second layer, we

multiply 𝑣1 with the adjacency matrix of the graph 𝐴 and obtain

a vector 𝑣2 = 𝑣1𝐴. The vector has 𝑁 elements with 𝑣2 [𝑖] being
the number of paths with one edge from node-𝑖 to the nodes in 𝐵.
We sort the nodes based on 𝑣2 and add the nodes with the largest

values to 𝑄 ′
2. Similarly, we can obtain 𝑣3 = 𝑣2𝐴. Each element 𝑣3 [𝑖]

is the number of paths with two edges from node-𝑖 to the nodes

in 𝐵. The nodes with the largest values of 𝑣3 are added to 𝑄 ′
3. This

procedure is done before the training process after Algorithm 1

returns 𝐵. During the training process, we obtain the nodes to in-

crease sampling probability by computing the intersection of the

sampled nodes and the 𝑄 ′
𝑙
in the corresponding layer. Since both

sets are small, our locality-aware sampling incurs little overhead

to the original sampling procedure.

Example: Let us consider again the graph in Figure 2a. Accord-

ing to the example in §3.2, node-1, 3 are stored on GPU-1 and

node-2, 4 are stored on GPU-2. This gives us 𝑄 ′
1 = 1, 2, 3, 4 and

𝑣1 = [0, 1, 1, 1, 1, 0]. For the second layer, We have 𝑣2 = 𝑣1𝐴 =
[1, 3, 4, 3, 2, 1]. Suppose the maximum number of nodes we can

store in 𝑄 ′
𝑙
for 𝑙 > 1 is three. The three nodes with largest value of

𝑣2 (i.e., node-2, 1, 3) are added to 𝑄 ′
2.

5 Evaluation

This section presents an evaluation of our data placement strat-

egy and locality-aware sampling technique for GNN training on

multiple GPUs.

5.1 Experimental Setup

Platform: Our experiments are conducted on a GPU workstation

with two Intel Xeon Gold 6248 CPUs and eight Nvidia Tesla V100

GPUs connected all together throughNVSwitch. The CPURAM size

is 512GB, and GPU memory size is 32GB. We run the experiments

on 2∼8 GPUs with two types of interconnections. The first type has

every two GPUs connected to each other, as shown in Figure 3a.

By only allowing a GPU to read data from the GPU next to it,

we simulate systems with NVLink Bridges. We use ‘(2+2)GPU’ to

denote four GPUs with each two connected with NVLink, and

‘(2*4)GPU’ to denote eight GPUs with each two connected with

NVLink. The second interconnection type has all GPUs connected

together, similar to the configuration in Figure 3b. We use ‘4GPU’

(‘8GPU’) to denote four (eight) all-connected GPUs.

Datasets: We evaluate our system on five graphs as listed in Ta-

ble 1. The first two graphs, reddit and yelp, are adopted from

GraphSAINT [32]. The other three graphs, products, papers100M

and MAG240M, are from the Open Graph Benchmark [10]. Among

the graphs, reddit, yelp and products are relatively small. While

they can be entirely put on our GPU, we use a limited buffer size
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Figure 4. Breakdown execution time on reddit graph with feature

buffer size 0.1N (53MB), 0.2N (107MB), and N/4 (134MB) on each

GPU.

on GPU to show how effective our techniques are on devices with

smaller memory. The papers100M and MAG240M are large graphs.

The original MAG240M graph is a heterogeneous graph with 122M

paper nodes and 122M author nodes. We only use the paper nodes

in our experiments since only the paper nodes have input features.

The feature vectors of the two graphs cannot be entirely put on a

GPU. We use them to show the effectiveness of our techniques for

large-scale GNN training.

Baseline:We compare our data placement strategy with four graph

partitioning methods: naive partitioning (NAIVE), random parti-

tioning (RAND), METIS partitioning [15], and PaGraph partitioning

(PG) [20]. Naive partitioning evenly divides graph nodes accord-

ing to their indices and puts nodes of consecutive indices in each

partition. Random partitioning performs random permutation to

nodes and then divides the permuted nodes with naive partitioning.

PaGraph partitions a graph based on training nodes. It iterates

over all training nodes and checks the connections between a node

and the nodes in previous iterations. Based on the connections,

PaGraph assigns the node to a partition so that the best load bal-

ance is achieved. Once it gets a partitioning of the training nodes,

it assigns all other nodes in L-hop neighbor of training nodes to

each partition. PaGraph does not use the interconnection among

GPUs – each GPU loads data either from its local memory or from

CPU.

Settings: Two GNN models are used in our evaluation. We train a

GraphSAGE model [7] on reddit, papers100M and MAG240M, and a

GCN model [16] on yelp and products, with layer-wise neighbor

sampling [41]. All the GNNs have three convolutional layers. The

number of sampled nodes in each layer is set to 8192. The dimension

of the intermediate embeddings is set to 512. We use Adam SGD

as the training algorithm and run it for 30 epochs. The batchsize is

set to 512 for reddit and products and 2048 for other graphs. The

learning rate is set to 0.01𝑛 where 𝑛 is the number of GPUs used

for training. For Algorithm 1, we set 𝛼 = 0.2 on ‘(2+2)GPU’ and

‘(2*4)GPU’ and 𝛼 = 0 on ‘2GPU’, ‘4GPU’ and ‘8GPU’. For locality-

aware neighbor sampling, we set 𝑙𝑡 = 0.15, 𝑢𝑡 = 0.2 and𝑀𝐴𝑋𝑆 = 8

in Algorithm 2, and set the size of neighbor set 𝑄 ′
𝑙
to 8192 in all

layers. We run the experiments for five times and report the average

execution time of five runs.

5.2 Results on Small Graphs

Figure 4 shows training time per epoch on reddit graph with

different partitioning methods and buffer sizes on 2 or 4 GPUs. We

can see that loading the input features is a performance bottleneck
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Figure 5. Breakdown execution time on yelp graph with feature

buffer size 0.1N (82MB), 0.2N (164MB), and N/4 (205MB) on each

GPU.
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Figure 6. Breakdown execution time on products with feature

buffer size N/8 (117MB) and 0.2N (187MB) on each GPU.

when the GPU buffer is small. With naive partitioning, data loading

takes more than 50% of the total execution time if we use two GPUs

and store 10% of the most frequently accessed nodes on each GPU

(i.e., 𝐵𝑆𝐼𝑍𝐸 = 0.1𝑁 ). When the GPU buffer size increases to 0.2𝑁 ,

the data loading time slightly decreases to 48% of the total execution

time. The ratios are similar on ‘(2+2)GPU’. PaGraph has almost the

same performance as naive partitioning. Because PaGraph does not

utilize the interconnects among GPUs, its performance on ‘4GPU’

is the same as on ‘(2+2)GPU’. With METIS partitioning, the data

loading time is slightly better but still takes about 40% of the total

execution.

Our data placement strategy achieves smaller data loading time

than other graph partitioning methods. On ‘2GPU’ and ‘(2+2)GPU’,

because only two GPU buffers are used together, data loading still

takes 30% of total execution time with our data placement strategy.

After applying locality-aware sampling in these two cases, the

data loading time is reduced to about 20% of total execution time

(shown as Our+LAS in the figure). On ‘4GPU’, because most (or all)

of nodes are stored on GPU, our data placement alone is able to

achieve good performance. Note that even all nodes are stored on

GPUs in this case, our data placement strategy outperforms other

partitioning methods, which indicates that it utilizes aggregate

memory of multiple GPUs more efficiently.

Figure 5 and 6 show training time per epoch with different parti-

tioning methods on yelp and products. The results are similar to

reddit. Our data placement strategy achieves smaller data loading

time than both PaGraph and METIS partitioning. We do not include

the execution time of PaGraph on eight GPUs in Figure 6 because

it cannot partition the products graph into eight parts within five

hours. For cases where our data placement strategy alone cannot

reduce the data loading time to 20% of total execution time, we
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Figure 7. Training losses on reddit graph.
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Figure 8. Training losses on yelp graph.
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Figure 9. Training losses on products graph.

apply locality-aware sampling to further reduce the data loading

time. The results are shown as Our+LAS in the figures.

The advantage of our techniques can be further verified by the

CPU and GPU memory access sizes. For reddit graph on ‘2GPU’

with 0.2𝑁 feature buffer, if METIS partitioning is used, each GPU

needs to access 40% of nodes from local GPU memory, 27% from

remote GPU memory, and 33% from CPU. Our data placement strat-

egy with locality-aware sampling increases local accesses to 51%

and reduces CPU accesses to 13%. On ‘4GPU’ with 0.1𝑁 feature

buffer, our data placement strategy increases local accesses by 72%

and reduces CPU accesses by 51% compared with Naive, and in-

creases local accesses by 13% and reduces CPU accesses by 12%

compared with METIS. The same improvement is observed on yelp

and products graph.

To show how locality-aware sampling affects the training pro-

cess, we compare the training loss of different sampling methods

for all the cases where locality-aware sampling is applied. Fig-

ure 7 shows the training loss over 30 epochs on reddit graph on

‘2GPU’ and ‘2+2GPU’. Compared to the original sampling method,

locality-aware sampling has almost the same convergence speed.

The training loss is even smaller than the original sampling method
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Table 2. Data preprocessing time in seconds with different graph

partitioning methods.

reddit yelp products

PaGraph 382 1976 4753

METIS 17 15 83

Our 0.49 0.76 3.6

at the end of training. While the result seems surprising, it is ac-

tually possible because the original sampling does not guarantee

that the estimation variance for neighbor aggregation is always

minimized [2, 41]. We also collect the training loss with PaGraph.

PaGraph has slower convergence than our method because it only

allows local shuffling of training nodes in order to achieve high

hit rates on GPU buffers. The local shuffling violates the i.i.d. sam-

pling assumption for the training algorithm and often leads to

models with lower accuracy [25]. The results on yelp (Figure 8)

and products (Figure 9) follow a similar pattern. The test accuracy

of the models trained with locality-aware sampling is 0.964 (±0.001),

0.642 (±0.003), and 0.787 (±0.001) on reddit, yelp, and products,

which match the accuracy of same models reported in previous

work [32] and Open Graph Benchmark leaderboard.

Note that the above results are collected with 𝑀𝐴𝑋𝑆 = 8 for

locality-aware sampling. The results indicate that locality-aware

sampling is able to reduce the data loading time without affect-

ing the convergence speed when𝑀𝐴𝑋𝑆 is small. However, when

𝑀𝐴𝑋𝑆 is larger, the training will have slower convergence as

skewed sampling leads to larger estimation variance for neighbor

aggregation. In this sense, our locality-aware sampling illustrates

a tradeoff between data loading time and convergence speed of

training algorithm.

Besides the reduced data loading time, another advantage of our

technique is that our algorithm is much faster than the previous

graph partitioning algorithms. Table 2 lists the execution time of

different graph partitioning methods for dividing the graphs into

four parts. The performance of PaGraph is dependant on the number

of partitions. It runs much longer for partitioning the graphs into

eight parts. The execution time of METIS and our algorithm is not

affected much by the number of partitions. The execution time

of our algorithm include the execution time of Algorithm 1 and

the time for computing an estimation of sampling probability 𝑝 as

described in §3.2. PaGraph partitioning is extremely slow because

the algorithm has 𝑂 (𝑁 2) time complexity. METIS has linear time

complexity w.r.t. the number of nodes and number of edges, and

thus it is much faster than PaGraph. Our algorithm is even faster.

This is because we encode the edge information in the sampling

probability 𝑝 (which can be computed efficiently as sparse matrix-

vector multiplication), and the partitioning procedure does nomuch

more work than iterating over an array of 𝑁 elements. Compared

to the training time, the data preprocessing overhead with our

algorithm is negligible.

5.3 Results on Large Graphs

We next run experiments on papers100M and MAG240M. PaGraph

cannot finish partitioning either of two graphs in five hours. METIS

partitioning aborts due to out-of-memory error. Our algorithm

takes 24 seconds to return a data placement strategy for paper100M
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Figure 10. Breakdown execution time on papers100M with feature

buffer size 0.1N (5.3GB), N/8 (6.6GB), and 0.2N (10.6GB) on each

GPU.
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Figure 11. Breakdown execution time on MAG240M with feature

buffer size 0.1N (17.4GB) and N/8 (21.8GB) on each GPU.
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Figure 12. Training losses on MAG240M graph.

and 27 seconds for MAG240M. To show the effectiveness of our tech-

niques, we run naive and random partitioning and compare the

data loading time.

Figure 10 shows the time per epoch on papers100M graph with

2∼8 GPUs. The graph has 53GB of node features. We set the 𝐵𝑆𝐼𝑍𝐸
on each GPU to 0.1𝑁 and 0.2𝑁 . Although the buffer size is smaller

than the GPUmemory size, we cannot allocate more memory for in-

put features because the GNNmodel and the intermediate variables

also take space. From the figure, we can see that naive partitioning

and random partitioning have almost the same data loading time.

Our data placement strategy consistently outperforms both random

partitioning and naive partitioning, reducing the data loading time

by 2.4x to 4.0x on different number of GPUs compared to random

partitioning. Our technique is most effective on ‘4GPU’ where the

GPUs are all connected together. On ‘(2+2)GPU’ and ‘(2*4)GPU’,

the ratio of data loading time to total execution time is slightly

higher but still lower than 20%.
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Figure 11 shows the performance results on MAG240M. The graph

has 174GB of node features. On ‘4GPU’ and ‘8GPU’, our data place-

ment strategy alone decreases the data loading time to less than

20% of total execution time. On ‘2GPU’ and ‘(2+2)GPU’, our data

placement strategy is also effective, achieving less than half data

loading time than random graph partitioning. However, because

the buffer size is small (20% of nodes in total on two GPUs), the

data placement strategy alone cannot decrease data loading time to

less than 20% of total execution time. Thus, we apply locality-aware

sampling in these cases. With locality-aware sampling, the ratios

of data loading time to total execution time are reduced to 15%.

Figure 12 shows the training loss of locality-aware sampling and

the original sampling method in the two cases. The two lines almost

overlap. The test accuracy of trained model is 0.688 (±0.002), which
matches the accuracy of the same model in Open Graph Bench-

mark. The results again validate that our locality-aware sampling

has little effect to convergence speed of training when 𝑀𝐴𝑋𝑆 is

small.

6 Related Work

Many systems have been proposed for GNN training on GPUs. The

most popular two are PyG [5] and DGL [27]. PyG is a collection of

GNN models and their common components. It does not support

large-scale GNN training by itself because its implementation as-

sumes the data fit in a single GPU. DGL aims to provide a uniform

abstraction for building GNN models. It assumes that the entire

graph can be stored on multiple GPUs. To minimize communication

overhead among GPUs, DGL adopts METIS graph partitioning [15].

As shown in our experiments, our data placement strategy not only

achieves faster data loading than METIS but also has a smaller data

preprocessing overhead.

NeuGraph [21] is a system for GNN training with full neigh-

bor aggregation on multiple GPUs. It uses METIS for graph parti-

tioning. To support large graphs, it stores the graph on CPU and

streams edge blocks with their associated node features onto GPUs.

However, copying data from CPU to GPU incurs a large overhead.

ROC [14] is another system for GNN training with full neighbor

aggregation on multiple GPUs. It assumes that all the input features

can be stored on GPUs and does not consider data loading problem

for large-scale GNN training. It focuses on improving load balance

among GPUs by partitioning the graph dynamically. Different from

these systems, our work targets data-parallel GNN training with

sampled neighbor aggregation, which is more commonly used for

large-scale GNN training [9]. In this setting, the computation time

is determined by the size of sampled subgraphs. Since the sampling

configuration is the same on different GPUs, load imbalance is less

of an issue. Graph partitioning is mainly designed for balancing

data movements among GPUs.

PaGraph [1, 20] aims to reduce the data loading time for GNN

training on large graphs that cannot be entirely stored on GPU.

The main idea is to buffer the most frequently accessed nodes on

GPU. For training on multiple GPUs, PaGraph uses a partition

algorithm of quadratic time complexity. The partitioning procedure

is so expensive that the data preprocessing time can be much longer

than the GNN training time itself. Also, to achieve high hit rates on

the GPU buffers, PaGraph only allows locally shuffling of training

nodes, which slows down the convergence of training process and

may lead to models with lower accuracy. Min et al. [22] also identify

the large data loading overhead issue in GNN training and propose

a GPU-oriented data communication technique to reduce the data

loading overhead. The idea is to allow the GPU threads to directly

access sparse features in CPU memory through zero-copy accesses

so that expense data gathering can saved. They do not consider data

partitioning and use DGL for evaluation. Our work is orthogonal to

and can be combined with their GPU-oriented data communication

technique.

Graph partitioning is also used for distributed GNN training on

CPUs [8, 26, 33, 39]. AliGraph [39] implements various graph par-

titioning methods for different types of graphs. AGL [33] proposes

an edge-partitioning algorithm. Dorylus [26] partitions the input

graph with an edge-cut algorithm [40]. These systems perform

full-batch or large-batch neighbor aggregation and distribute the

aggregation operation on multiple machines. Graph partitioning is

used to reduce communication and improve load balance for the

distributed neighbor aggregation operation. Therefore, the problem

objective is different from the objective of our work.

There are also many works on accelerating GNN computation

on GPUs [12, 13, 28]. These works mainly focus on improving the

data locality and load balance for the graph convolution operation.

FeatGraph [11] combines graph partitioningwith feature dimension

tiling to accelerate computations in GNNs. C-SAW [24] focuses on

accelerating graph sampling on GPUs; it partitions graph edges

for out-of-memory sampling. These works do not consider the

overhead for loading input features.

Data movement problem has also been studied for graph embed-

ding systems [17, 23, 38]. These systems also use graph partitioning

to handle large graphs with limited memory capacity. For example,

DGL-KE [38] adopts METIS graph partitioning, which has been

shown inefficient for GNN training in our experiments. Because

graph embedding models have different computation and memory

access patterns from GNNs, these systems cannot be used for GNN

training and cannot be directly compared with our work.

7 Conclusion

In this work, we aim to reduce the data loading overhead for large-

scale GNN training on multiple GPUs. We propose a performance

model of the data movement among CPU and GPUs in GNN train-

ing, and based on the performance model, we provide an efficient

algorithm to find an optimal data placement strategy. We also pro-

pose a locality-aware neighbor sampling technique to further re-

duce the data loading overhead without affecting the accuracy. The

experiments show that our techniques outperform the existing

graph partitioning methods in terms of both data loading efficiency

and preprocessing overhead.

Acknowledgements

This work was supported by NSF award CCF-2028825.

References
[1] Youhui Bai, Cheng Li, Zhiqi Lin, Yufei Wu, Youshan Miao, Yunxin Liu, and

Yinlong Xu. 2021. Efficient Data Loader for Fast Sampling-Based GNN Training
on Large Graphs. IEEE Transactions on Parallel and Distributed Systems 32, 10
(2021), 2541–2556.

[2] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[3] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An efficient algorithm for training deep and large graph



ICS ’22, June 28–30, 2022, Virtual Event, USA Shihui Song and Peng Jiang

convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257–266.

[4] Alberto Garcia Duran and Mathias Niepert. 2017. Learning graph representa-
tions with embedding propagation. In Advances in neural information processing
systems. 5119–5130.

[5] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[6] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In International
Conference on Machine Learning. 1263–1272.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[8] Loc Hoang, Xuhao Chen, Hochan Lee, Roshan Dathathri, Gurbinder Gill, and
Keshav Pingali. [n.d.]. EFFICIENT DISTRIBUTION FOR DEEP LEARNING ON
LARGE GRAPHS. update 1050 ([n. d.]), 1.

[9] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. Ogb-lsc: A large-scale challenge for machine learning on graphs.
arXiv preprint arXiv:2103.09430 (2021).

[10] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[11] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang,
Zhiru Zhang, and Yida Wang. 2020. Featgraph: A flexible and efficient backend
for graph neural network systems. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–13.

[12] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. GE-SpMM:
General-Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural
Networks. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20).

[13] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021.
Understanding and bridging the gaps in current GNN performance optimizations.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 119–132.

[14] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems (MLSys) (2020), 187–198.

[15] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[17] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large scale graph
embedding system. Proceedings of Machine Learning and Systems 1 (2019), 120–
131.

[18] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive Graph
Convolutional Neural Networks. In AAAI Conference on Artificial Intelligence.

[19] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324
(2018).

[20] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. Pa-
Graph: Scaling GNN training on large graphs via computation-aware caching. In
Proceedings of the 11th ACM Symposium on Cloud Computing. 401–415.

[21] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. Neugraph: parallel deep neural network computation on large
graphs. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19).
443–458.

[22] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, and Wen-mei Hwu. 2021. Large Graph Convolutional
Network Training with GPU-Oriented Data Communication Architecture. Proc.
VLDB Endow. 14, 11 (jul 2021), 2087–2100. https://doi.org/10.14778/3476249.
3476264

[23] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Marius: Learning Massive Graph Embeddings on a Sin-
gle Machine. In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21). 533–549.

[24] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-
SAW: A framework for graph sampling and random walk on GPUs. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15.

[25] Benjamin Recht and Christopher Ré. 2012. Toward a noncommutative arithmetic-
geometric mean inequality: conjectures, case-studies, and consequences. In Con-
ference on Learning Theory. JMLR Workshop and Conference Proceedings, 11–1.

[26] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, et al. 2021. Dorylus:
affordable, scalable, and accurate GNN training with distributed CPU servers and
serverless threads. In 15th {USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 21). 495–514.
[27] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,

Jinjing Zhou, Qi Huang, Chao Ma, et al. 2019. Deep graph library: Towards
efficient and scalable deep learning on graphs. arXiv preprint arXiv:1909.01315
(2019).

[28] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System
for {GNN} Acceleration on GPUs. In 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21). 515–531.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[30] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[31] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In Advances in neural information processing systems. 4800–4810.

[32] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning Method.
In International Conference on Learning Representations.

[33] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable
System for Industrial-Purpose Graph Machine Learning. In VLDB Endowment.
3125–3137.

[34] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
2018. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv preprint arXiv:1803.07294 (2018).

[35] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-lehman neural machine for link
prediction. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 575–583.

[36] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. In Advances in Neural Information Processing Systems. 5165–5175.

[37] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. Distdgl: distributed graph neural
network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.

[38] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. 2020. Dgl-ke: Training knowledge graph
embeddings at scale. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 739–748.

[39] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. Proc. VLDB Endow. (2019), 2094–2105.

[40] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 301–
316.

[41] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-Dependent Importance Sampling for Training Deep and Large Graph
Convolutional Networks. In Advances in Neural Information Processing Systems.
11249–11259.


