

# **CereSZ**: Enabling and Scaling Error-bounded Lossy Compression on Cerebras CS-2

<u>Shihui Song</u>, Yafan Huang, Peng Jiang, Xiaodong Yu, Weijian Zheng, Sheng Di\*, Qinglei Cao, Yunhe Feng, Zhen Xie, and Franck Cappello

Presenter: Robert Underwood



### Lossy Compression in AI and HPC

- Lossy compression can reduce data size drastically.
  - *Much higher compression ratio* than lossless compression (limited to 2:1).
  - Introduced errors are controlled within a certain bound *error-bounded*.
- Error-bounded lossy compression is used by various domains.



Deep Learning<sup>[1]</sup> (e.g. Natural Language Processing)



Cosmology Simulation<sup>[2]</sup> (e.g. NYX)

Climate Simulation<sup>[3]</sup> (e.g. CESM-ATM)



Quantum Circuit Simulation<sup>[4]</sup> (e.g. Grover)

- 1. [TelecomReview'2020] The rise of emotionally intelligent artificial intelligence
- 2. [News@CMU'2021] Machine Learning Accelerates Cosmological Simulations
- 3. [TechReview@MIT'2018] What the hell is a climate model—and why does it matter?

4. [IEEESpectrum'2020] IBM's concept of quantum volume tries to measure quantum computing progress in ways beyond counting qubits

### An Emerging AI Chip System: Cerebras CS-2

- Cerebras is critical to accelerate many scientific computing applications.
  - <u>3D Fast Fourier Transform</u>: **959 ms** for **512x512x512** complex input array<sup>[1]</sup>.
  - Matrix-Vector Multiplications: 92.58 PB/s on 35,784,000 processing elements<sup>[2]</sup>.
- However, Cerebras CS-2 system is processing massive data.
  - Large Language Model Training: GPT-3 had 175 billion parameters, and this number is increasing to 1 trillion in near future models such as MSFT-1T<sup>[3]</sup>.
  - <u>Seismic Imaging</u>: **1.8 TB** data for a 4.5 seconds and 45 Hz flat wave<sup>[2]</sup>.

Performing efficient data reduction within Cerebras CS-2 system is necessary!

- 1. [ICS'2023] Wafer-Scale Fast Fourier Transforms
- 2. [SC'2023] Scaling the "Memory Wall" for Multi-dimensional Seismic Processing with Algebraic Compression on Cerebras CS-2 Systems.
- 3. [IEEE Micro'2023] Cerebras Architecture Deep Dive: First Look Inside the Hardware/Software Co-Design for Deep Learning

### Background: Cerebras CS-2 System

- Dataflow Architecture:
  - Wafer-scale engine (WSE) is the central processor of Cerebras CS-2 system.



Cerebras WSE, where each node denotes one PE



Structure of a single PE

 Parallel Processing: Map computing stages into consecutive PEs in the same row.



Pipeline parallelization on Cerebras WSE

 Implementation: A language called CSL provided by Cerebras.

### Challenges: Deploying Compression on Cerebras

#### Cerebras Feature 1: Unconventional Memory Structure

- No traditional global memory as NVIDIA GPUs.
- Local memory for each PE is limited (up to 48 kB).

#### Cerebras Feature 2: Spatial Constraints from Data-Flow Design

- Each PE can only access data from its neighbors.
- The data movement directions could influence the performance.

How to perform lossy data compression that efficiently utilizes Cerebras CS-2 architectural characteristics?

# CereSZ: Compression Algorithm

An overview of the compression algorithm



# CereSZ: Compression Algorithm

Fixed-length Encoding



# Perf. Opt. 1: Data Parallelism (Block-level)

 Data Parallelism with Data Blocking Throughput with different numbers of PE rows





Idel PE PE runs Orgi. Algo.

**Throughput** = Input Data Size / compression time

# Perf. Opt. 2: Pipeline Parallelism (Stage-level)

Algorithm 1. Evenly distributing n sub stages serves

Pipeline Parallelism for 3

PE runs Stage 3

Breakdown cycles for compression

Enod

#### Stages

PE runs Stage 1

| •           | Algorithm 1. Eveniy distributing h sub-stages across                                                                                                                                                                                                                                              | , Encu.                          |             |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|--|--|--|--|
|             | <i>m</i> PEs                                                                                                                                                                                                                                                                                      | 37124<br>29181                   |             |  |  |  |  |
| i <b></b> i | Input: The stages: s <sub>1</sub> , s <sub>2</sub> ,, s <sub>n</sub> ; Total cycles of all stages: C; Number                                                                                                                                                                                      | 27188                            |             |  |  |  |  |
|             | of PEs: m;<br><b>Output:</b> Stage group assigned to PEs: $G_1, G_2,, G_m$<br>1 Initialize $G_1 = \{\}, G_2 = \{\},, G_m = \{\}$<br>2 <b>for</b> each stage group $G_i$ in $\{G_1, G_2,, G_{m-1}\}$ <b>do</b><br>3 <b>while</b> The sum of runtime of the stages in $G_i < \frac{C}{m}$ <b>do</b> | Addition<br>1033<br>1038<br>1049 |             |  |  |  |  |
|             | 4 move the next $s_i$ to $G_i$                                                                                                                                                                                                                                                                    | tLength                          | Bit-shuffle |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                   | 1386                             | 33609       |  |  |  |  |
|             | $C = \{c_1, c_2, \dots, c_n\} = (C_1 \cup C_2 \cup \cup C_{n-1})$                                                                                                                                                                                                                                 | 1370                             | 25675       |  |  |  |  |
|             | $5 O_m = \{s_1, s_2, \dots, s_n\} = (O_1 \cup O_2 \cup \dots \cup O_{m-1})$                                                                                                                                                                                                                       | 1385                             | 23694       |  |  |  |  |
|             | Fixed-Length for CESM-ATM, HACC,                                                                                                                                                                                                                                                                  |                                  |             |  |  |  |  |

and QMCPack: 17, 13, and 12

Bit-shuffle -> several 1-bit shuffle

Stages: Multiplication, Addiction, Lorenzo Prediction, Sign, Max, GetLength, 1-bit shuffle

# Perf. Opt. 3: Data Parallelism (Pipeline-level)

 Data Parallelism for Multiple Pipelines



#### Pseudocode runs on the first PE of each pipeline

```
task relay() void {
    // Receive the input dsd and activate computeColor once the
    // current PE receives it own data block
    if (nblock == (total_cols-cur_col)/pipeline_length)){
        @mov32(data, din, .{.async = true, .activate =
            computeColor}); nblocks = 0;}}
    // Pass the data blocks for right PEs and activate relayColor again
    else{
        @mov32(dout, din, .{.async = true});
        nblocks += 1;
        @activate(relayColor);}
```

Passing data with 2-length pipeline <sup>t</sup>



// Activate relayColor to run relay task again
@activate(relayColor);}

- // Execute substages assigned to the  $\ensuremath{\mathsf{PE}}$
- // Send results to next PE in the pipeline}

// Bind two colors to their corresponding tasks
@bind\_task(relay, relayColor);
@bind\_task(compute, computeColor);

# **Evaluation: Settings**

- Neocortex Cerebras CS-2
  - 512×512 processing elements (PEs)
  - 850MHz clock frequency

#### Baseline Compressor

- *SZ*<sup>[1]</sup> : AMD EPYC 7742 CPUs
- *cuSZp*<sup>[2]</sup> : NVIDIA A100 GPU (40GB)
- *SZp*<sup>[2]</sup>: AMD EPYC 7742 CPUs
- *cuSZ*<sup>[3]</sup> : NVIDIA A100 GPU (40GB)

### - Negertay Carebras CS 2

### Evaluation Metrics

- Throughput (GB/s)
- Compression ratio
- Reconstructed data quality

#### HPC Datasets

- *Hurricane*: weather simulation
- *NYX*: cosmology simulation
- *QMCPack*: quantum computing
- *RTM*: seismic imaging
- HACC: cosmic simulation
- CESM-ATM: climate simulation

# **Evaluation:** Throughput

Compression and decompression throughput on RTM dataset



On average, CereSZ can achieve 457.35 GB/s and 581.31 GB/s for compression and decompression throughput, which is 4.9 and 4.8 times faster compared with cuSZp.

### **Evaluation: Compression Ratio**

| _     |       | CESM-ATM     |        | HACC         |        | Hurricane    |        | NYX           |        | QMCPack      |        | RTM          |        |
|-------|-------|--------------|--------|--------------|--------|--------------|--------|---------------|--------|--------------|--------|--------------|--------|
|       | REL   | range        | avg    | range        | avg    | range        | avg    | range         | avg    | range        | avg    | range        | avg    |
| CereS | 1E-2  | 2.67~21.60   | 8.73   | 4.66~9.18    | 6.82   | 5.21~28.82   | 17.10  | 7.83~31.98    | 20.22  | 9.59~19.67   | 14.63  | 10.52~31.99  | 23.46  |
|       | Z1E-3 | 2.13~16.10   | 6.49   | 3.18~4.91    | 4.05   | 3.41~24.37   | 12.57  | 4.54~31.84    | 14.05  | 5.31~9.02    | 7.16   | 5.94~31.98   | 17.73  |
|       | 1E-4  | 1.68~13.42   | 5.11   | 2.38~3.20    | 2.83   | 2.53~19.71   | 9.64   | 3.10~29.74    | 9.61   | 3.48~4.97    | 4.23   | 3.79~31.96   | 12.87  |
| SZp   | 1E-2  | 9.91~70.48   | 23.72  | 10.16~13.62  | 11.56  | 10.80~88.94  | 40.26  | 12.21~127.80  | 67.58  | 12.44~22.45  | 17.45  | 14.22~127.94 | 67.51  |
|       | 1E-3  | 6.70~69.15   | 20.14  | 3.82~9.63    | 5.39   | 7.44~57.42   | 23.92  | 8.62~125.55   | 40.16  | 6.08~11.60   | 8.84   | 7.91~127.79  | 43.40  |
|       | 1E-4  | 4.22~67.65   | 17.03  | 3.49~5.51    | 3.57   | 4.49~37.08   | 15.29  | 4.91~98.23    | 23.41  | 3.79~6.57    | 5.18   | 4.73~127.51  | 28.19  |
| cuSZp | 1E-2  | 2.84~43.75   | 12.56  | 5.24~10.08   | 7.63   | 5.94~88.88   | 38.70  | 9.60~127.80   | 66.73  | 12.44~22.21  | 17.33  | 13.97~127.95 | 66.97  |
|       | 1E-3  | 2.25~25.86   | 8.46   | 3.43~5.20    | 4.31   | 3.71~56.88   | 22.31  | 5.09~125.55   | 38.44  | 6.08~10.08   | 8.08   | 6.90~127.80  | 42.29  |
|       | 1E-4  | 1.75~19.59   | 6.24   | 2.53~3.39    | 2.96   | 2.70~36.66   | 14.36  | 3.35~98.23    | 22.14  | 3.79~5.56    | 4.68   | 4.17~127.52  | 27.43  |
| SZ    | 1E-2  | 26.13~4.0E+4 | 2.2E+3 | 16.58~931.76 | 217.94 | 23.76~404.71 | 110.33 | 1.3E+3~1.2E+5 | 2.3E+4 | 17.10~727.13 | 372.11 | 23.57~1.3E+5 | 4.4E+3 |
|       | 1E-3  | 9.30~2.9E+4  | 941.39 | 6.11~30.97   | 15.57  | 8.81~105.49  | 35.67  | 84.55~1.8E+4  | 3.2E+3 | 6.37~221.11  | 113.74 | 9.27~2.3E+4  | 894.69 |
|       | 1E-4  | 5.04~2.9E+4  | 825.49 | 3.74~8.92    | 5.75   | 4.63~48.46   | 18.72  | 14.38~2.6E+3  | 471.61 | 3.88~66.09   | 34.99  | 5.30~1.6E+4  | 548.91 |
| cuSZ  | 1E-2  | 19.18~25.33  | 22.89  | N/A          | N/A    | 15.35~28.62  | 22.53  | 28.71~31.57   | 30.22  | 7.50~21.55   | 14.53  | N/A          | N/A    |
|       | 1E-3  | 11.34~25.16  | 18.48  | N/A          | N/A    | 8.91~23.61   | 15.97  | N/A           | N/A    | 4.26~17.70   | 10.98  | N/A          | N/A    |
|       | 1E-4  | 5.38~24.43   | 12.47  | N/A          | N/A    | 3.37~17.25   | 8.36   | 10.75~31.28   | 16.22  | N/A          | N/A    | 3.67~30.84   | 11.63  |

- CereSZ has lower compression ratios than CPU-based compressor SZ
- But CereSZ is inline with GPU-based alternatives such as cuSZ and cuSZp.

# **Evaluation: Data Quality**

Slice and Isosurface visualization analysis



#### CereSZ has the same data quality as cuSZp

### Summary

- CereSZ is **the first** error-bounded lossy compressor on Cerebras CS-2 system.
- 457.35 GB/s and 581.31 GB/s for compression/decompression throughput.
- CereSZ has linear speedups across the rows and columns of the 2D mesh of computing units (i.e. PEs) on Cerebras.
- CereSZ also achieves **similar compression ratio** with GPU alternatives.
- CereSZ demonstrates potential to preserve high data quality.



Shihui Song University of Iowa shihui-song@uiowa.edu https://songshsongsh.github.io

